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We use an improved version of the SU(3) flavor parity-doublet quark-hadron model to investigate the higher-
order baryon number susceptibilities near the chiral and the nuclear liquid-gas transitions. The parity-doublet
model has been improved by adding higher-order interaction terms of the scalar fields in the effective mean
field Lagrangian, resulting in a much-improved description of nuclear ground-state properties, in particular the
nuclear compressibility. The resulting phase diagram of the model agrees qualitatively with expectations from
lattice QCD, i.e., it shows a crossover at zero net baryochemical potential and a critical point at finite density.
Using this model, we investigate the dependence of the higher-order baryon number susceptibilities as a function
of temperature and chemical potential. We observe a strong interplay between the chiral and liquid-gas transition
at intermediate baryochemical potentials. Due to this interplay between the chiral and the nuclear liquid-gas
transitions, the experimentally measured cumulants of the net baryon number may show very different beam
energy dependence, subject to the actual freeze-out temperature.
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I. INTRODUCTION

The theory of quantum chromodynamics (QCD) is expected
to have a rich phase structure at finite chemical potential and
temperature [1–3]. Its study is a central topic of high energy
nuclear physics. Experimental programs at the Large Hadron
Collider (LHC) and the Relativistic Heavy Ion Collider (RHIC)
are currently investigating the properties of hot and dense QCD
matter. Future programs at RHIC, the Facility for Anti-Proton
and Ion Research (FAIR), and the NICA facility are aimed at
a better understanding of the phase transition from hadronic to
deconfined quark matter and the transition from a phase where
chiral symmetry is broken to one where it is restored.

Theoretical studies employing lattice QCD methods have
already established that the transition from hadrons to quarks
proceeds as a smooth crossover in the case of vanishing net
baryon number density [4,5]. For finite net baryon density,
the use of standard lattice QCD methods is limited by the
so-called fermion sign problem. Some conclusions can be
drawn by extending the lattice thermodynamic quantities,
via a Taylor expansion around μB = 0 [6,7], for values of
μB/T < 2. However, to go to even higher densities, higher
orders of the expansion coefficients need to be known to
a very good accuracy, a requirement which cannot be met
with the current computational possibilities. Thus, the current
conclusions are that a first order phase transition seems very
unlikely for chemical potentials smaller than μB/T ≈ 2–3
(i.e., for μB < 200–300 MeV).

At very large net baryon densities and low temperatures,
astrophysical observations may also help to constrain the QCD
equation of state (EoS). Nuclear matter ground-state properties
have been derived from measurements to a high accuracy. On
the other hand, properties of compact stars like their masses
and, eventually, their radii can serve as important information
for determining the equation of state at several times nuclear
ground-state density (cf., e.g., [8]).

With the currently available information, we can theorize
that, in the temperature (T ) and baryochemical potential (μB)
plane, the conjectured QCD phase diagram consists, primarily,
of three parts:

(1) a high μB and temperature region, where chiral sym-
metry is restored, containing a deconfined quark-gluon
plasma (QGP),

(2) a low temperature and moderate μB region containing
dense, strongly interacting nuclear matter and nuclei,
and

(3) a low temperature and low chemical potential region
made up of purely hadronic matter described by a
hadron resonance gas.

The transition from a phase where chiral symmetry is
broken to one where it is restored, for lower temperatures, is
conjectured to be a first-order phase transition, which switches
to a continuous transition at a point known as the “critical
point” (Tc). At values of μB lower than that at Tc, the transition
is termed a “crossover transition”. The transition from a dilute
gas of hadrons to bound nuclear matter is also a first-order
phase transition, generally called the nuclear liquid-gas phase
transition.

In order to verify this suggested phase structure experimen-
tally, heavy-ion collision experiments are conducted at various
beam energies. Some particularly interesting observables
in these experiments are the moments of the multiplicity
distributions, the susceptibilities of the different conserved
net charges (baryon number, strangeness, and electric charge)
[9,10]. The reason behind this interest is that one proposed
universal characteristic of the critical point of QCD is the
divergence of the correlation length, ξ → ∞, of the order
parameter (σ and ζ ) fields. As a consequence, higher-order
fluctuation moments of observables coupled to these fields
also diverge, at least for an infinite system size and relaxation
time [1,11].
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The direct comparison of these measured susceptibilities
with lattice QCD results is neither straightforward, nor
entirely unambiguous. Currently known complications in the
interpretation of such measurements include corrections of
experimental efficiency and acceptance effects [12–14], cluster
formation [15], conservation laws [16,17], corrections due to
the finite size of the system [18], fluctuations of the system
volume [19,20], and fluctuations present in the initial state of
the collision [21]. Moreover, it has been pointed out that the
hadronic decoupling phase, which occurs after hadronization,
can have a strong influence on the observed multiplicity
distributions [22–25].

On the theoretical side, the measured susceptibilities, at
least for large values of the chemical potential, are usually
compared to effective models, which normally do not include
a deconfinement or chiral transition and a nuclear liquid-gas
transition simultaneously.

Current heavy-ion experiments create systems with widely
varying μB and high T values. In fact only the experiments at
the LHC and high-energy RHIC can be directly connected to
LQCD results. Most interesting results on the baryon number
susceptibilities, which is the central topic of the paper, have
been obtained at rather low beam energies, e.g., at the RHIC
beam energy scan and the HADES experiment at GSI. Here
the values of chemical potential are large and temperatures
are moderate. In our paper we focus on the fact that at such
high values of chemical potential (μB > 400 MeV) the effect
of nuclear interactions can and should not be neglected. In
this paper, we will discuss how the observed susceptibilities
may change if one takes into account an equation of state that
includes a nuclear liquid-gas transition, as well as a first order
chiral transition at high baryon densities. We will also show
how the observed susceptibilities change with beam energy
for different freeze-out lines in the phase diagram and how
the interplay between the liquid-gas transition and the chiral
transition manifests itself in the beam-energy dependence.

II. MODEL DESCRIPTION

A. Parity-doublet model

The parity-doublet model, as used in this paper, serves
as an effective approach to describe the strongly interacting
hadronic, and in extension, quark matter. In this approach, an
explicit mass term for baryons in the Lagrangian is possible,
which preserves chiral symmetry. Here, the signature for
chiral symmetry restoration is the degeneracy of the usual
baryons and their respective negative-parity partner states. In
the following, we outline the basic SU(3) parity model and
determine nuclear matter saturation properties with this ansatz.
Subsequently, we calculate the phase diagram of isospin-
symmetric matter by varying the baryochemical potential and
temperature of the system.

In the model approach, positive and negative parity states
of the baryons are grouped in doublets N = (N+,N−) as
discussed in [26,27]. The flavor SU(3) extension of the
approach, using the nonlinear representation of the fields, is
quite straightforward, as shown in [28] and details can be found
in [29]. In addition, as outlined in [30], one constructs SU(3)-

invariant terms in the Lagrangian including the meson-baryon
and meson-meson self-interaction terms.

Taking into account the scalar and vector condensates in
mean-field approximation, the resulting Lagrangian LB reads
as [29]

LB =
∑

i

(B̄ii∂/Bi) +
∑

i

(B̄im
∗
i Bi)

+
∑

i

(B̄iγμ(gωiω
μ + gρiρ

μ + gφiφ
μ)Bi), (1)

summing over the states of the baryon octet. The effective
masses of the baryons (assuming isospin-symmetric matter)
are

m∗
i± =

√[(
g

(1)
σ i σ + g

(1)
ζ i ζ

)2 + (m0 + nsms)2
] ± g(2)

σ i σ ± g
(2)
ζ i ζ,

(2)

with the g
(j)
i as the coupling constants of the baryons with the

scalar fields. In addition, there is an SU(3) symmetry-breaking
mass term proportional to the strangeness ns of the respective
baryon. Note that the parity-doublet models allow for two
different scalar coupling terms i = 1,2.

The scalar meson interaction, driving the spontaneous
breaking of the chiral symmetry, can be written in terms
of SU(3) invariants I2 = (σ 2 + ζ 2), I4 = −(σ 4/2 + ζ 4), and
I6 = (σ 6 + 4ζ 6) as

V = V0 + 1
2k0I2 − k1I

2
2 − k2I4 + k6I6, (3)

where V0 is fixed by demanding a vanishing potential in the
vacuum.

In this work, the last term, k6I6, has been introduced
following Ref. [31], which results in an improved lowering
of the calculated nuclear matter compressibility value to
267 MeV, which is now in reasonable agreement with the
phenomenologically obtained range of about 200–280 MeV.

The set of scalar coupling constants are fitted in order
to reproduce the vacuum masses of the nucleon, and the

, �, and � hyperons, whereas the vector couplings are
chosen to reproduce reasonable values for nuclear ground-state
properties (see Ref. [29]).

As a likely parity partner of the nucleon we choose the
N(1535) resonance with its correspondent mass. In order to
keep the number of parameters small, we assume equal mass
splitting of the baryons with their respective parity partners,
therefore setting g

(2)
ζ i = 0. An SU(3) description, in addition to

enhancing the number of degrees of freedom, also necessarily
increases the number of parameters. In order to avoid being
overwhelmed by too many new parameters, we assume, for
simplicity, that the splitting of the various baryon species and
their respective parity partners is of the same value for all
baryons, which is achieved by setting g(2)

σ i ≡ g(2) and g
(2)
ζ i = 0.

The hyperonic vector interactions were tuned to generate
phenomenologically acceptable optical potentials of the hyper-
ons in ground-state nuclear matter, with U
(ρo) = −28 MeV
and U�(ρo) = −18 MeV. The mass difference due to the
strange quark was fixed at ms = 150 MeV. All parameter
values used are summarized in Table I.
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TABLE I. Model parameters: the F , D, and S-type couplings ασ ,
g8

σ , and g1
σ determine the couplings of the various baryons.

k0 k1 k2

(242.61 MeV)2 4.818 −23.357

k6 ε g1
σ

(0.276)6 MeV−2 (75.98 MeV)4 −8.239 296

g8
σ ασ gNω

−0.936 200 2.435 059 5.45

B. Mesons and quarks

At some temperature, QCD exhibits a transition from a
hadronic to a deconfined phase, at which point the quarks be-
come the dominant degrees of freedom. This transition occurs
as a smooth crossover, at least for μB = 0. Consequently there
has been discussion about the actual temperature up to which
a hadronic description is still valid [32–34]. We can only say
for sure that the order parameter of the chiral transition, the
chiral condensate, has an inflection point at the pseudocritical
temperature TPS ≈ 155 MeV, and that deconfinement occurs
in a temperature region of Tdec ≈ 150–400 MeV. Nevertheless,
at some point, the hadronic parity-doublet model will not be
the appropriate effective description of QCD and one needs
to introduce a deconfinement mechanism in the model. In this
work, we will apply a mechanism that has been introduced
in [35], to add a deconfinement transition in a chiral hadronic
model. This is done by adding an effective quark and gluon
contribution, as done in the PNJL approach [36,37]. This
model uses the Polyakov loop � as the order parameter for
deconfinement. � is defined via

� = 1

3
Tr

[
exp

(
i

∫
dτA4

)]
, (4)

where A4 = iA0 is the temporal component of the SU(3) gauge
field, distinguishing � and its conjugate �∗, at finite baryon
densities [6,38,39].

The effective masses of the quarks are generated by the
scalar mesons, except for a small explicit mass term (δmq =
5 MeV and δms = 150 MeV, for the strange quark) and m0:

m∗
q = gqσ σ + δmq + m0q,

(5)
m∗

s = gsζ ζ + δms + m0q,

with values of gqσ = gsζ = 4.0. Similar to the case of the
baryons, we also introduced a mass parameter m0q = 165 MeV
for the quarks. Again, this additional mass term can be due to a
coupling of the quarks to the dilaton field (gluon condensate).
Given such a mass term, the quarks do not appear in the
nuclear ground state, which would be a clearly nonphysical
result. This also permits us to set the vector type repulsive
interaction strength of the quarks to zero. A nonzero vector
interaction strength would lead to a massive deviation of the
quark number susceptibilities from lattice data, as has been
indicated in different mean field studies [40–43].

A coupling of the quarks to the Polyakov loop is introduced
in the thermal energy of the quarks. Their thermal contribution

to the grand-canonical potential � can be written as

�q = −T
∑
i∈Q

γi

(2π )3

∫
d3k ln

(
1 + � exp

E∗
i − μi

T

)
(6)

and

�q = −T
∑
i∈Q

γi

(2π )3

∫
d3k ln

(
1 + �∗ exp

E∗
i + μi

T

)
. (7)

The sums run over all quark flavors, where γi is the corre-
sponding degeneracy factor, E∗

i = √
m∗2

i + p2 is the energy,
and μ∗

i is the chemical potential of the quark.
All thermodynamic quantities, energy density e, entropy

density s, as well as the densities of the different particle
species ρi, are derived from the grand-canonical potential. It
includes the effective potential U (�,�∗,T ), which controls the
dynamics of the Polyakov loop. For simplicity, in our approach
we adopt the ansatz proposed in [37]:

U = − 1
2a(T )��∗ + b(T ) ln[1 − 6��∗

+ 4(�3�∗3) − 3(��∗)2], (8)

with a(T ) = a0T
4 + a1T0T

3 + a2T
2

0 T 2, b(T ) = b3T
3

0 T .
The parameters a0, a1, a2, and b3 are initially fixed, as in

[37], by demanding a first order phase transition in the pure
gauge sector at T0 = 270 MeV, and that the Stefan-Boltzmann
limit of a gas of gluons is reached for T → ∞. In general,
of course, the presence of quarks may have a significant
influence on the Polyakov potential [44], and in order to obtain
a crossover transition at μB = 0, we change T0 to 200 MeV.

In the following, as a way to remove the hadrons once
quarks are deconfined, we introduce excluded volumes for
the hadrons in the system. Including effects of finite-volume
particles in a thermodynamic model for hadronic matter was
proposed long ago [45–54]. In recent publications [35,42], we
adopted this ansatz to successfully describe a smooth transition
from a hadronic to a quark dominated system (see also [55]).

In particular, we introduce the quantity vi, which is the
volume excluded by a particle of species i, where we only dis-
tinguish between baryons, mesons, and quarks. Consequently,
vi can assume three values:

vquark = 0,

vbaryon = v,

vmeson = v/a,

where a is a number larger than 1. In our calculations, we
choose a value of a = 8, which assumes that the radius r of
a meson is half of the radius of a baryon. Note that at this
point, we neglect any possible density-dependent and Lorentz
contraction effects on the excluded volumes as introduced
in [52,53]. The modified chemical potential μ̃i, which is
connected to the real chemical potential μi of the ith particle
species, is obtained by the following relation:

μ̃i = μi − vi P, (9)

where P is the sum over all partial pressures. To be thermo-
dynamically consistent, all densities (ẽi, ρ̃i, and s̃i) have to be
multiplied by a volume correction factor f , which is the ratio
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of the total volume V and the reduced volume V ′, not being
occupied:

f = V ′

V
=

(
1 +

∑
i

viρi

)−1

, (10)

e =
∑

i

f ẽi, ρi = f ρ̃i, s =
∑

i

f s̃i. (11)

As a consequence, the chemical potentials of the hadrons are
decreased by the quarks, but not vice versa. In other words,
as the quarks start appearing, they effectively suppress the
hadrons by changing their chemical potential, while the quarks
are only affected through the volume correction factor f .

III. RESULTS

A. Comparison with Lattice QCD

A comparison with data obtained from lattice QCD calcu-
lations is necessary in order to benchmark the model results
and their subsequent modifications. To that end, we determine
the interaction measure I , defined as

I = ε − 3P

T 4
, (12)

with ε, P , and T as the energy density, pressure, and
temperature, respectively. The model result for I at μB = 0
as function of temperature, in comparison to available lattice
data [56], is shown in Fig. 1. We observe that, indeed, the
model gives a good description of LQCD thermodynamics
below the pseudocritical temperature Tc. But, although the
shapes obtained from both sets of data are similar, the peak
value of the interaction measure is much higher in the case of
the parity-doublet model than that obtained from lattice QCD.
This is likely a result of our use of the standard Polyakov loop
potential for the description of the quark and gluon decon-
finement. For future investigations, it is therefore interesting
to implement an improved version of the Polyakov poten-
tial which better describes the thermodynamics at μB = 0.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 100  120  140  160  180  200  220  240  260  280

In
te

ra
ct

io
n
 M

ea
su

re

T (MeV)

Model Data Lattice Data

FIG. 1. Interaction measure, from the model (at μB = 0) and
lattice data, as a function of temperature.

At this point, we want to clarify the intent of this paper
again: instead of constraining our model parameters by a fit
to lattice QCD results at μB = 0, we constrain our model
parameters by actual observables at large baryon densities and
low temperatures, e.g., nuclear ground-state properties and
neutron star observations. Starting from these parameters, we
then extend the model to low densities where the remaining
free parameters (mainly those of the Polyakov loop) are
subsequently used, to get at least a reasonable description of
low-μB lattice results. Within the current setup of the model,
a perfect description of lattice QCD results appears to be
unachievable.

Checking model results for nuclear model ground-state
properties, we obtain phenomenologically acceptable values
of a nucleonic binding energy of −16.00 MeV and a
compressibility (κ) of 267.12 MeV, for a saturation density
ρ0 = 0.142 fm−3. Note that the compressibility, which in
general tends to be very high in parity-doublet models, has
a reasonable value (see also [31]).

B. Pressure and quark fraction

Some interesting characteristics of the system may be
revealed by observing the pressure of the system, along the
transition lines, as a function of temperature.

For the nuclear liquid-gas transition we define this line as
the maximum of the derivative of the net-baryon density with
respect to the baryochemical potential. Similarly, for the chiral
transition, we define it as the maximum of the derivative of the
σ field (chiral condensate) with respect to the baryochemical
potential (or the temperature, for baryochemical potential
values of μB < 400 MeV, i.e., beyond the merger of the
two transition lines). Note that both criteria can be used
equivalently for either transition, as the net-baryon density
and value of the σ field are intimately related (cf. [57–59]
and references therein). This means that when we observe
a rapid change in the net baryon number density, we will
also observe a rapid change in the chiral condensate and vice
versa. Thus, both criteria can be used to identify the crossover
lines of the chiral and LG transition. Note that, if there was
an additional separation of the chiral and deconfinement line
(e.g., as discussed in [60]), the situation we try to describe
would be even more complicated.

In the region where both first-order transitions switch to
crossovers, we fit a double-Gaussian function to the derivative
of the net-baryon density with respect to the baryochemical
potential, assigning each peak to one transition line. One
should, of course, note that the two transitions show clear
differences. Even though the value of the chiral condensate
changes slightly at the liquid gas transition, chiral symmetry
is restored much later—after the chiral transition, where the
chiral condensate, essentially, drops to zero.

The model results for the pressure along the transition and
crossover lines are shown in Fig. 2, where the baryochemical
potential increases with decreasing temperature along both
lines (cf. Fig. 4). The behavior of the pressure along the
transition line for the liquid-gas transition is as expected. Since
the baryon density along the liquid-gas transition does not
change considerably with increasing temperature, the change
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FIG. 2. Pressure, as a function of temperature, along the transition
lines.

in the pressure is driven, primarily, by the increase in the
entropy caused by the increasing temperature. Such a behavior
can be observed when the specific entropy in the gas phase
is larger than that in the liquid phase, as derived from the
Clapeyron equation [61].

For the chiral transition, the change of the pressure along
the transition line is more complicated. At large tempera-
tures and small chemical potentials, the pressure essentially
follows the trend of the nuclear liquid-gas transition, as the
meson-dominated system transitions smoothly into a system
dominated by quark and gluons. As the chemical potential
increases, however, the change in degrees of freedom is
manifested more strongly in a change of net baryon number,
as the system transitions from heavy baryons to light baryons.
Consequently, the change in net baryon number dominates the
change of pressure and thus, the pressure along the transition
line shows a behavior opposite that observed during the
liquid-gas transition. As the transition line goes to even lower
temperatures, the behavior of the pressure changes direction
again. This time, however, it is a result of the change in
curvature of the transition line in the T -μB diagram (cf. Fig. 4).
This is, most likely, an artefact of the Polyakov model, which is
not very reliable at low values of temperature and large values
of baryochemical potential. In any case, it is important to note
that the pressure at zero temperature for the deconfinement
transition takes a finite value, which is an important property
of a “realistic” model for the QCD EoS.

In order to illustrate the change in degrees of freedom at the
transition lines, one can determine the so-called quark fraction
qf , defined as

qf = εquark + εPolyakov

εbaryon + εmeson + εPolyakov
, (13)

with εquark, εbaryon, εmeson, and εPolyakov denoting the energy
density contributions from the quarks, baryons (including
quarks), mesons, and the Polyakov loop contribution from
the gluons, respectively. The variation in this quantity, as a
function of temperature, is shown in Fig. 3 along both transition
lines.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 40  60  80  100  120  140  160

Q
u
ar

k 
Fr

ac
ti
o
n

T (MeV)

LG Chiral

FIG. 3. Quark fraction qf , as function of temperature, along the
transition lines.

Along the LG transition line, the quark fraction is es-
sentially zero for temperatures below 100 MeV (where the
interplay between the two crossover transitions is negligible).
Above this value it gradually rises (cf. Fig. 3) as the LG
crossover line approaches the deconfinement crossover (cf.
Fig. 4), thereby introducing an increasing number of quarks in
the system.

For the chiral transition, the quark fraction starts to increase,
quite sharply, at around 100 MeV (cf. Fig. 3). Below that
temperature, the transition is, apparently, a dominantly chiral
one, with only a slow change in degrees of freedom. At very
low temperatures, however, a slow change in the quark fraction
is observed once again. This is because, at these temperatures,
quarks can be introduced into the system due to the large
chemical potential and due to the quark-suppressing effect of
the Polyakov potential disappearing at low temperatures.
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FIG. 4. T -μB diagram showing the first-order liquid-gas (LG)
phase transition (bold, black line), the first-order, chiral phase
transition (bold, red line), the LG crossover (dashed, black line), the
chiral crossover (dashed, red line), the LG critical point (black dot),
the chiral critical point (red dot) and the isentropes (bold, blue lines)
for S/A values 4, 10, 28, and 121, from right to left, respectively.
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C. Susceptibilities and the QCD phase diagram

The thermodynamics of QCD at small values of μB/T
can be obtained by a Taylor expansion of lattice results at
μB = 0, in terms of the baryochemical potential. Expanding
the pressure,

P = −� = T lnZ
V

, (14)

where � is the grand-canonical potential, V is the volume, and
Z is the grand-canonical partition function, the corresponding
expansion coefficients cB

n , or alternatively, the baryon number
susceptibilities χB

n , result as

χB
n

T 4−n
= n! cB

n (T ) = ∂n(P (T ,μB)/T 4)
∂(μB/T )n

. (15)

The behavior of these coefficients—or susceptibilities—
especially, the third-order χB

3 (skewness) and fourth-order χB
4

(kurtosis), in and around the phase transitions, are expected
to provide stronger signals of criticality, as compared to the
second-order χB

2 , because they diverge with a higher power
of the correlation length of the order parameter, close to a
second-order-type phase transition.

In experiment, usually the normalized ratios χB
3 /χB

2 and
χB

4 /χB
2 are extracted from data, in order to remove the volume

dependence of the susceptibilities (N.B.: this does not remove
their dependence on volume fluctuations). Before calculating
the susceptibilities, it is useful to clearly identify the crossover
and first-order phase transition lines of the QCD phase
diagram, within this model; as discussed in Sec. III B and as
shown in Fig. 4. We observe that both critical end points occur
at a very low temperature. We also observe that the associated
crossover lines, while first separated, merge at an intermediate
chemical potential μB ≈ 400 MeV. The figure also shows
lines of constant entropy-per-baryon (isentropes) for various
values of entropy-per-baryon. The isentropes show a distinct
structure, a bending over at the crossover, as the dominant
degrees of freedom change from hadrons to quarks. At the
junction of the liquid-gas and chiral crossover transitions, the
isentropes signal a sharpening of the transition generated by
the interplay of the two crossovers.

To calculate the susceptibilities, the equations of motion,
following from Eqs. (1) and (3), are solved self-consistently in
mean field approximation, by minimizing the grand-canonical
potential as a function of the baryochemical potential and the
temperature, as before. Then, the second-, third-, and fourth-
order derivatives of Eq. (15) are numerically calculated using
a five-point formula. For all temperatures ranging from 15 to
180 MeV, and all baryochemical potential values from 0 to
1200 MeV, the results with the previously discussed ratios of
susceptibilities are shown in Figs. 5 and 6.

The figures illustrate the effect that the two phase transitions
have on the susceptibility values. In the deconfinement phase
the susceptibilities have values smaller than 1, as expected for
a gas of low-mass fermions. In the region below the LG phase
transition (at values of μB < 600 MeV), they are consistently
close to 1, since the system is composed of bound hadrons,
where a value of 1 for the cumulants of conserved charges
is expected. For the region between the crossover transitions

FIG. 5. Susceptibility ratio χB
3 /χB

2 as a function of temperature
and baryochemical potential. The solid black lines denote the first-
order LG and chiral transitions, the dashed black lines denote the
crossovers, and the green (solid and dashed) lines denote the freeze-
out curves for Tlim values 165 and 120 MeV, respectively.

from liquid (bound hadrons) to gas (of hadron resonances) and
from a hadron resonant gas (HRG) to the QGP, an interplay
between the two phase transitions can be observed. This results
in the cumulants sometimes having values below 1, or even
below zero, and sometimes having values greater than 1, in
this intermittent region.

In order to give a rough estimate of the susceptibility ratios
that could be expected from experiment, one has to define
the point in the phase diagram at which the fluctuations are,
essentially, frozen out. This point will be different for each
beam energy and system size, and in general, is not trivially
defined. However, it has been found that the measured mean
multiplicities of stable hadrons can be nicely described by a
thermal fit, with a single value of T and μB, for a specific beam
energy. For different beam energies, different T and μB values
are obtained, thus producing the so-called “freeze-out line”
[62]. By fitting experimental data, the equation of a freeze-out

FIG. 6. Same as Fig. 5 for the susceptibility ratio χB
4 /χB

2 .
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FIG. 7. Susceptibility ratios as function of beam energy along the
freeze-out line with Tlim = 120 MeV.

line can be obtained as

T (MeV) = Tlim

1 + expt
[
2.60 − ln (

√
sNN (GeV))
0.45

] , (16)

where μB and
√

sNN are related as

μB (MeV) = 1303

1 + 0.286
√

sNN (GeV)
, (17)

with
√

sNN being the beam energy in GeV and Tlim being a
parameter. Again, one must keep in mind that Eqs. (16) and
(17) represent a mere approximation, and the true freeze-out
process is much more complicated than is assumed in this study
[25]. Nevertheless, it is worthwhile to study the behavior of
the normalized cumulants along different possible freeze-out
lines.

In this study, two different freeze-out lines, obtained by
using two different values of Tlim (165 and 120 MeV) in
Eqs. (16) and (17) as shown in Figs. 5 and 6, are used.
Here, the higher value corresponds to the expected latest point
of chemical equilibrium while the lower value is closer to
the kinetic freeze-out point. For an ideal Boltzmann gas, the
susceptibility ratio χB

4 /χB
2 along these freeze-out lines can

been shown to be equal to 1.
The extracted values of the normalized cumulants are

displayed in Figs. 7 and 8, as functions of the beam energy√
sNN. In the case of the low freeze-out temperature, the

measured cumulants essentially resemble those of an ideal
HRG, down to beam energies

√
sNN � 10 GeV. Below that

energy, the measured susceptibilities actually probe the critical
behavior of the nuclear liquid-gas transition and not that of the
QCD chiral transition, as already found in [64–66]. If, however,
the higher freeze-out temperature is realized, one can observe
a different dependence of the measured cumulants on the beam
energy. A peak in the susceptibility ratio is then observed, at a
beam energy of

√
sNN ≈ 20 GeV, due to the steepening of the

chiral crossover with respect to chemical potential, at finite μB

(note: not due to the appearance of a critical point). At lower
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FIG. 8. Same as Fig. 7 for Tlim = 165 MeV; with the value of
χB

4 /χB
2 for μB ≈ 0, obtained from lattice data at T = 150 MeV [63],

represented by the thick, red bar.

beam energies, the critical behavior of the nuclear liquid-gas
transition can be observed again.

In Fig. 8 we also compare our results with the value
of χB

4 /χB
2 which has been extracted from lattice QCD

calculations at μB = 0 and T ≈ 150 MeV [63]. One can
already see that the lattice data slightly below TPC still has
a significant uncertainty, and a quantitative comparison with
our results is difficult for low temperatures.

At this point it would be interesting to directly compare our
susceptibility ratios with experimental data. As has been shown
in, e.g., [67], the values of the cumulant ratios extracted from
experiment depend strongly on the selected acceptance, as
well as the centrality. Furthermore, experiments only measure
net protons, not net baryons. It is therefore not clear what we
should compare our grand canonical values to. One should
also keep in mind that a direct comparison of our grand
canonical results with experimental data is not possible due to
the many effects discussed in [12–25]. The point of our paper
is, rather, to discuss the effects of including realistic nuclear
matter, in a model with hadron-quark phase transition, on
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FIG. 9. Susceptibility ratio χB
4 /χB

2 vs χB
3 /χB

2 , along the freeze-
out line with Tlim = 120 MeV, for beam energies greater than 2 GeV.
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the baryon-number susceptibilities. The eventual comparison
of the cumulants to experimental observables has to be
determined in a dynamical approach to heavy-ion collisions,
which may use our model EoS as an input.

It was pointed out in [68] that, given a critical point of a
particular universality class (and only one critical point!), the
dependence of the normalized cumulants, as functions of one
another, should show a particular universal banana-type shape.

Figures 9 and 10 show the shapes obtained from the parity-
doublet model calculations. Due to the fact that this model
actually has two separate transitions, which are difficult to
disentangle, the resulting shapes do not resemble a banana, but
are more complicated. In general, when there is an interplay
between two phase transitions the relationship between the
skewness and the kurtosis is affected by the remnants of the
crossover regions related to both the LG and chiral transition,
as shown in Fig. 10. Even for the Tlim = 120 MeV freeze-out
line (cf. Figs. 5 and 6), the aforementioned interactions, for√

sNN � 2 GeV, give results considerably different from those
which are obtained using universality arguments (cf. Fig. 9),
as only the liquid-gas transition is observed.

An important result of this work is the strong dependence
of the range of values for the ratios, at large beam energies,
on the choice of the freeze-out point. Since both transitions

can have an impact on the observed cumulant ratios, it is
therefore important to understand the point of origin, during
the system’s evolution, of the measured fluctuations, a problem
which cannot be solved within the bounds of the present model,
as it requires a dynamical description of the nuclear collisions,
including the propagation of critical fluctuations.

IV. CONCLUSION

We have presented an improved version of the hadronic,
three-flavor, parity-doublet model including a deconfinement
transition to quarks and gluons. The main modification is the
inclusion of a six-point interaction term, which significantly
improves the nuclear matter saturation properties of the model.
With this, we have constructed a model which gives a satis-
factory description of nuclear matter, as well as qualitatively
describes lattice QCD thermodynamics at μB = 0.

We have employed the model to study the interplay between
the nuclear liquid-gas transition and the chiral transition at
large temperatures. We find that this interplay does have an
effect on the equation of state and the extracted susceptibilities
in a significant range of the phase diagram. This means that
the influence of dense nuclear matter on the phase structure,
even at large temperatures and moderate chemical potentials,
cannot be neglected.

Furthermore, we have studied the beam energy dependence
of the normalized cumulants from our model for different
freeze-out conditions. Again, we observe a strong influence
of nuclear matter interactions on the observed fluctuations,
particularly for low beam energies.

Our work highlights the fundamental importance of consis-
tently including the properties of interacting nuclear matter
in an effective model of the QCD equation of state for
interpreting experimental data of particle fluctuations in heavy-
ion collisions.
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