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Abstract: Femtoscopy has the capacity to probe the space-time geometry of the particle-emitting
source in heavy-ion collisions. In particular, femtoscopy of like-sign kaon pairs may shed light on
the origin of non-Gaussianity of the spatial emission probability density. The momentum correla-
tions between like-sign kaon pairs are measured in data recorded by the STAR experiment, from
√

sNN = 200 GeV Au + Au collisions at RHIC, BNL. Preliminary results hint at the possible existence
of non-Gaussian, Lévy-stable sources, with the likely presence of an anomalous diffusion process in
the signal for the identically charged kaon pairs so produced. More statistically significant studies at
lower centre-of-mass energies may contribute to the search for the critical end point of QCD.

Keywords: RHIC; STAR; femtoscopy; Bose–Einstein correlations; Lévy distribution; anomalous
diffusion; identically charged kaons; heavy-ion collisions; high-energy physics

1. Introduction

Following the discovery of quark–gluon plasma, one of the main thrusts of high-
energy nuclear physics has been the understanding and exploration of the space-time
geometry of the particle-emitting source created in heavy-ion collisions [1]. The quantity
mainly investigated to this end is the two-particle source function, sometimes called the
spatial correlation function (CF) or the pair-source distribution. Although this quantity
is not easy to reconstruct experimentally, detailed studies of its behaviour are merited
by a multitude of reasons, including its connections to hydrodynamic expansion [2,3],
critical phenomena [4], light nuclei formation [5], etc. Phenomenological studies and
experimental analyses both, emphasise the importance of describing the shape of the source
function. Previously conducted hydrodynamical studies seem to suggest a Gaussian source
shape [3,6]. Multiple measurements were also taken with the Gaussian assumption [7,8].
However, recent source-imaging studies suggest that the two-particle source function for
pions has a long-range component, obeying power-law behaviour [9–14].

Femtoscopy [15] is the sub-field of high-energy heavy-ions physics that allows for the
investigation of the space-time structure of femtometre-scale processes encountered in high-
energy nuclear and particle physics experiments. Femtoscopic correlations in heavy-ion
collisions are currently understood to be caused partly by Bose–Einstein statistics [16–19].
Alternatively, they are called Hanbury-Brown–Twiss (HBT) correlations in recognition of
pioneering works by Hanbury-Brown and Twiss [21? ,22] on intensity interferometry in
the field of observational astronomy to extract the apparent angular sizes of stars from
correlations between the signals of two detectors. Additionally, correlations can arise out
of final-state interactions, such as electromagnetic interactions and strong interactions
undergone by the investigated particles. These correlations between pairs of identical
bosons can be used to explore the properties of the matter created in heavy-ion collisions
and to map the geometry of the particle-emitting source [1].
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2. Correlations

Femtoscopy works on the principle that the momentum correlation function of a
pair of particles is related to the probability density of particle creation at a space-time
point (X) for a particle with four-momentum P. This probability density (S(X, P)) is also
called the source function. Defining N1(P)—obtained by multiplying the particle-creation
probability density by 〈n〉, the average number of particles—as the momentum-invariant
distribution and N2(P1, P2)—obtained by multiplying the pair-creation probability density
by 〈n(n − 1)〉, the average number of pairs—as the pair-momentum distribution, the
two-particle correlation function can be written as [23]:

C(P1, P2) =
N2(P1, P2)

N1(P1)N1(P2)
; (1)

where
N2(P1, P2) =

∫
S(X1, P1)S(X2, P2)

∣∣ψP1,P2(X1, X2)
∣∣2d4X1d4X2 , (2)

where ψP1,P2(X1, X2) is the two-particle wave function that simplifies to:∣∣ψP1,P2(X1, X2)
∣∣2 =

∣∣∣ψ(0)
P1,P2

(X1, X2)
∣∣∣2 = 1 + cos[(P1 − P2)(X1 − X2)] (3)

in the interaction-free case for bosons, when only the quantum-statistical effects are taken
into account. Thus, the correlation function can be redefined as [24]:

C(Q, K) ' 1 +

∣∣S̃(Q, K)
∣∣2∣∣S̃(0, K)
∣∣2 ; (4)

where
Q = P1 − P2 , K =

P1 + P2

2
(5)

and
S̃(Q, K) =

∫
S(X, K)eiQXd4X (6)

denote the pair-momentum difference, the average momentum and the Fourier transform
(FT) of the source, respectively, assuming that Q� K holds for the kinematic range under
investigation. The correlation functions are measured with respect to Q over a range of
well-defined K values; then, the properties of the correlation functions are analysed as
functions of the average K for each of those ranges.

A significant fraction of the particles created in a heavy-ion collision is secondary,
i.e., they come from decay. Whereas the primordial particles are created directly from the
hydrodynamic expansion of the collision volume, the decay particles arise from interactions
that take place much later. Hence, the source can be assumed to consist of the following
two components [25]:

1. a core (SC(X, K)) consisting of primordial particles created by the hydrodynami-
cally expanding, strongly interacting quark–gluon plasma, along with the decays of
resonances with half lives of less than a few fm/c; and

2. a halo (SH(X, K)) consisting of the products created by the decay of long-lived reso-
nances, including but not limited to η, η′, K0

S and ω, making it possible to decompose
S(X, K) as [25]:

S(X, K) = SC(X, K) + SH(X, K). (7)

As explained in detail in Ref. [25], the Fourier-transformed emission function of the
halo vanishes for resolvable relative momenta, i.e., the Q values that lie in the experimen-
tally achievable region. Hence, the halo does not contribute to the measured correlation
function, which, in turn, is determined by the core component. Hence, the measured
correlation function, when extrapolated to Q = 0, does not take a value of 2 as expected
from Equation (4) but takes the following form:
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lim
Q→0

C(Q, K) = 1 + λ(K) < 2. (8)

This “intercept parameter” of the correlation function, also called the correlation
strength (λ(K)) may depend on the pair-momentum K. It can be understood on the basis of
the core-halo model by rewriting the correlation function using Equations (4), (6) and (7); and
the fact that S̃H(Q, K) ≈ 0 for experimentally accessible values of Q [9]:

C(Q, K) = 1 +
[

NC(K)
NC(K) + NH(K)

]2 ∣∣S̃C(Q, K)
∣∣2∣∣S̃C(0, K)
∣∣2

= 1 + λ(K)

∣∣S̃C(Q, K)
∣∣2∣∣S̃C(0, K)
∣∣2 , (9)

where NC(K) =
∫

SC(X, K)d4X and NH(K) =
∫

SH(X, K)d4X are contributions of the core
and the halo, respectively, and λ(K) is:

λ(K) =
[

NC(K)
NC(K) + NH(K)

]2

. (10)

Realising that X ≡ X(~r, t), the spatial correlation function:

D(~r, K) =
∫

S(~r′ +
~r
2

, K)S(~r′ − ~r
2

, K)d3~r′ (11)

can be used to rewrite C(Q, K) as [24]:

C(Q, K) ≈
∫

D(~r, K)
∣∣ψQ(~r)

∣∣2d3~r∫
D(~r, K)d3~r

. (12)

3. Lévy Distribution

Usually, the shape of the source distribution is assumed to be Gaussian. However,
evidence of a non-Gaussian source for correlated pions has been found in multiple studies,
necessitating a generalisation of the distribution to a Lévy-stable one [26]:

S(x, K) = L(x; α, λ, R) =
1

2π

∫
e−(Q

′R)α
eiQ′xdQ′; (13)

where L is the one-dimensional Lévy function, R is the Lévy-scale parameter, λ is the corre-
lation strength, 0 < α ≤ 2 is the Lévy exponent and Q′ is the integration variable. These
parameters are generally understood to depend on K. Salient features of the distribution
include moments greater than α being undefined and D(~r, K) necessarily having a Lévy
shape with the same α in cases in which S(X, K) is Lévy-shaped. The distribution exhibits
a power-law behaviour for α < 2, where α = 1 represents a Cauchy distribution and α = 2
represents a Gaussian distribution. Multiple factors, such as anomalous diffusion, jet frag-
mentation and proximity to the critical end point (CEP), can contribute to the appearance
of Lévy-stable sources. However, the high-multiplicity, nucleon-on-nucleon nature of the
analysed heavy-ion collisions makes it unlikely for jet fragmentation to be the dominant
reason for the appearance of Lévy sources in this study—as it has been identified as the
cause of Lévy-stable sources in e+e− collisions at LEP [13]. On the other hand, the high
centre-of-mass-energy of the collisions explored here rules out the possibility of the system
being close to the critical end point [4,27,28].

Interestingly, it is trivial to establish that α is related to one of the critical exponents
(η). In the case of a second-order phase transition, the η exponent describes the power-law
behaviour of the spatial correlation function at the critical end point with an exponent of
−(d− 2+ η), where d is the dimension. In a three-dimensional analysis in which d = 3, this
exponent would compute to−(1+ η). However, it is established that the three-dimensional
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Lévy distribution describes the power-law tail of the spatial correlation function with an
exponent of −(1 + α). Thus, comparing the exponents at the critical end point, it can be
easily seen that the Lévy exponent (α) is identical to the critical exponent (η), a conjecture
explored in Ref. [29]. The second-order QCD phase transition is expected to be in the same
universality class as the three-dimensional Ising model. In that case, the η exponent has a
value of 0.03631 ± 0.00003 at the critical end point [30]. However, the universality class of
the random-field, three-dimensional Ising model may also be of relevance here, where the
value of η is 0.50 ± 0.05 [31]. Thus, extracting α at collision energies lower than those used
in this analysis while taking into account finite size and time effects might yield insightful
information about the nature of the quark–hadron phase transition and shed light on the
location of the critical end point in the QCD phase diagram [4,32–35].

As coordinate-space distributions extracted from experimental data show a heavy tail,
the limitations of the hydrodynamical approach—assuming idealised freeze-out with a
sudden jump in the mean free path from zero to infinity—become clear. This requires a
more realistic approach using hadronic rescattering whereby the system cools as it dilutes
with an expanding hadron gas, its mean free path diverges to infinity in a finite time interval
and rescattering occurs in the presence of a time-dependent mean free path. This signals the
existence of anomalous diffusion—experimentally observed as power-law-shaped tails in
coordinate-space distributions of the source—in the system, as opposed to normal diffusion,
with the Gaussian source exhibiting a strongly decaying tail caused by the Brownian motion
of the particles constituting the system.

The momentum-space diffusion equation of one-dimensional, normal diffusion is
expressed as [28]:

∂W(q, t)
∂t

= −kNq2W(q, t); (14)

where kN is the normal-diffusion constant, q is the momentum, t is the time and W(q, t) is
the momentum-space probability distribution. The coordinate-space solution to Equation (14)
is given by the following Gaussian expression:

W(x, t) =
1√

4πkNt
exp

(
− x2

4kNt

)
. (15)

For anomalous diffusion, the coordinate-space diffusion equation, in terms of the
spatial probability distribution (W(x, v, t)), is the generalised Fokker–Planck equation [28]:

∂W
∂t

+ v
∂W
∂x

+
F(x)

m
∂W
∂v

= ηα′0D1−α′
t LFPW. (16)

where ηα′ is the generalised friction constant of dimension [ηα′ ] = sα′−2, 0D1−α′
t is the

Riemann–Liouville operator:

0D1−α′
t tp =

(
∂

∂t

)
0D−α′

t tp =
Γ(1 + p)
Γ(p + α′)

tp+α′−1 (17)

and LFP is the Fokker–Planck operator:

LFP =
∂

∂x
V′(x)
mηα′

+ kA
∂2

∂x2 , (18)

where V′(x) is related to the force (F(x)) by F(x) = − dV(x)
dx , as explained in Refs. [36,37].

The momentum-space solution to Equation (16) is given by:

W(q, t) = exp (−tkα
A|q|α). (19)

where W(q, t) happens to be the FT or the characteristic function of Lévy-stable source
distributions, where α is the Lévy exponent from Equation (13) and kA is the anomalous
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diffusion constant. If a centred, spherically symmetric, Lévy-stable source-distribution is
assumed and all final-state interactions are neglected, the one-dimensional, two-particle
correlation function takes the following simplified form:

C(q) = 1 + λ · e−(qR)α
, (20)

where λ is the correlation strength from Equations (10) and (8), R is the Lévy scale, α is
the Lévy exponent and q is the absolute value of the three-momentum difference in the
longitudinally co moving system (LCMS) [9]:

q = qLCMS = |~p1 − ~p2|LCMS. (21)

R can be interpreted as the homogeneity length of the particle species, while α repre-
sents the extent of the anomalous diffusion occurring in the system. The spherical symmetry
in qLCMS is ideal for a one-dimensional analysis of a three-dimensional, spherically sym-
metric system. Subsequent measurements with higher precision might necessitate a move
towards a full, three-dimensional analysis. Until then, the approximations used in Ref. [38]
may be utilised for a preliminary analysis.

Momentum correlations of like-sign kaon pairs at √sNN = 200 GeV can be utilised
to calculate C(q) and to, consequently, ascertain the shape of the pair-source distribution.
If anomalous diffusion is the sole source of non-Gaussianity, then it is expected that the
extent of the anomaly will depend on the total cross section or, equivalently, on the mean
free path. Since the mean free path is larger for kaons than for pions, the diffusion of the
former is expected to be more anomalous in the hadron gas. Hence, the α for kaons (ακ) is
expected to be smaller [28]. Thus, measuring ακ may shed light on the role of anomalous
diffusion in the hadron gas as the origin of the appearance of Lévy distributions.

4. Measurement

The data used for this analysis were obtained from RHIC’s gold-on-gold collisions at
a 200 GeV centre-of-mass energy per nucleon pair. The collisions were performed in 2016
and measured by the solenoidal tracker at RHIC (STAR) experiment. The STAR experiment
detects multiple particle species emanating from the medium created by the collisions.
These different particle species, depending on their mass and charge, produce different
shapes when their ionisation energy loss (dE/dx) is plotted as a function of momentum.
These shapes can help distinguish the particle species from each other and help isolate
the kaons, as observed in Figure 1. For this investigation, the analysis processes about
410 million events in the 0–30% centrality range. They are subjected to strict track and pair
selection criteria that, following Ref. [39], include the identification of kaons via energy loss
measured by the time-projection chamber (TPC); pair selection based on the fraction-of-
merged-hits (FMH) and the splitting-level (SL); and limitations on the track’s momentum,
rapidity and distance-of-closest-approach (DCA).

HitsHits

P . charge [GeV/c]

Hits

(a)

HitsHits

P . charge [GeV/c]

(b)
Figure 1. Sample ionisation energy loss as a function of momentum × charge (a) for all available
charged particles and (b) after being cut only for the charged kaons to be isolated.
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The one-dimensional, like-sign, two-kaon, femtoscopic correlation functions are then
experimentally constructed using the event-mixing technique [40]. A(q)—the actual pair
distribution—is formed from kaon pairs, with members of the pair belonging to the same
event. This distribution is affected by various effects, such as kinematics and acceptance.
B(q)—a background distribution—is constructed with the pairs to correct for these effects
and the members of this distribution originate from separate events. In this analysis, the
method for event mixing described in Refs. [9,13] is used to correct for residual correlations.
For a set of event classes based on the centrality and the location of the collision vertex, a
background event pool is established. Then, for each real event, a mixed event of the same
event class is created from this pool, making sure that each particle in this mixed event
belongs to a different real event. Subsequently, pairs within the mixed event contribute to
the formation the aforementioned B(q). Finally, the pre-normalised correlation function is
calculated as:

C(q) =
A(q)
B(q)

·
∫

B(q) dq∫
A(q) dq

, (22)

for three different ranges of transverse mass (mT), defined as mT =
√

m2 + (KT/c)2, where
m is the kaon mass and KT is the average transverse momentum of the pair. The normalisa-
tion integrals are performed over a range in which the correlation function is not supposed
to exhibit quantum-statistical features. It is to be noted that the method outlined here
is applied to pairs belonging to a given range of average momenta. Furthermore, in the
event-mixing technique described above, the number of actual and background pairs is the
same, aside from the effect of the pair-selection criteria mentioned earlier.

With the momentum correlations, obtained from experimental data (both measured
and the empirical values of the calculated correlation function ), preparations are made
to fit the Lévy function detailed in Equation (20) to C(q). However, the assumptions
behind Equation (20) make it unsuitable for a direct fit to experimentally obtained data. As
mentioned in Section 1, final-state interactions have considerable effects on the momentum
correlations between like-sign kaon pairs; therefore, they need to be imbibed into the
analysis as corrections to Equation (20) in order to make it suitable and physically relevant
as a fit for the correlation function obtained above. Multiple factors can contribute to the
final-state modifications of the momentum correlations, the leading of which are Coulomb
interactions, as a gas of charged hadrons can never be entirely devoid of Coulomb repulsion.

The final-state Coulomb interactions are incorporated into the CF by using the Bowler–
Sinyukov formula, which includes a correction term for Coulomb repulsion, which is
expressed as [41,42]:

C(q) =
[
1− λ + λ · K(q; α, R) ·

(
1 + e−(qR)α

)]
· N · (1 + qε) , (23)

where N is a normalisation factor; ε is responsible for a linear, residual, long-range back-
ground; and K is the Coulomb correction [24]:

K(q; α, R) =

∫
D(~r)

∣∣∣ψCoul
q (~r)

∣∣∣2d3~r∫
D(~r)

∣∣ψq(~r)
∣∣2d3~r

, (24)

where D(~r) is the simplified spatial pair distribution, and ψCoul
q (~r) is the solution to

the two-particle Schrödinger equation in the presence of a Coulomb potential. In this
study, K(q; α, R) for kaons is calculated by numerically employing the procedure used in
Refs. [12,24,43]. The inclusion of other final-state contributions, such as the strong inter-
action, can resolve the possible underestimation regarding R and λ and overestimation
regarding α of the Lévy parameters [44]. However, the statistical significance of such precise
corrections turns out to be negligible in the context of the current measurement.
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5. Results

As illustrated in Figure 2, the Coulomb-corrected Lévy distribution function is in agree-
ment with the measured C(q) over the entire qLCMS range. The femtoscopic peak [18,19]
and the Coulomb hole [42] are both observed as expected. The values of the normali-
sation factor (N) and the linear background factor (ε) are observed to be close to 1 and
0, respectively.

 [GeV/c]
LCMS

q
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

C
(q

)

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

Measured data
Systematic uncertainties

)α,R,λ(q;vyeL
CoulC

 0.04± = 0.69 λ
 0.18 fm±R = 4.71 fm 

 0.07± = 1.52 α
 0.01± = -0.04 ∈
 0.002±N = 1.009 

 / NDF = 95.50 / 112, C.L.:0.86792χ
Fit range = 0.018-0.249 [GeV/c]

STAR Preliminary

 = 200 GeV (year 2016)NNsAu+Au 
+K+Centrality: 0-30%, K

] < 0.7772 [GeV/cT0.703 < m

Figure 2. C(q) as a function of qLCMS for positively charged kaon pairs in the mT range (703–777 MeV/c2)
and the centrality range (0–30%). The red dots denote the measured data, and the blue lines (solid
and dotted) denote the fit. The systematic uncertainties are shown as hollow rectangles.

The systematic uncertainties are obtained by combining the uncertainties arising from
variations in the event- and pair-selection criteria, denoted by ∆cuts, as mentioned above,
and those arising out of variations to the range of the fit are denoted by ∆fits. At this
preliminary stage, systematic uncertainties arising out of variations in the track-selection
criteria are not included. Thus, the final systematic uncertainties (∆total) are obtained as:

∆total =
√
(∆fits)2 + (∆cuts)2 . (25)

Figure 3 shows the kaon homogeneity length (R), otherwise known as the Lévy scale,
as a function of mT. It is observed to exhibit large, systematic uncertainties, a very weak
dependence on mT and a possible decrease with respect to it, as reported in previous
studies [2,3,6,8,14,45]. However, hydrodynamical studies predicting a decrease in the Lévy
scale as a function of mT are based on the Gaussian source assumption [2,3]. Hence, more
investigations on this topic are in order. The extracted values of the Lévy scale in this
charged-kaon analysis are also found to be similar to PHENIX’s like-sign pion results [9],
with Rπ∼5–7 fm for the mT range of 600–700 MeV/c2. A more detailed comparison of the
mT dependence of Lévy scales of different particle species could shed light on the origin
of the appearance of Lévy-stable sources, given that, according to calculations based on
hydrodynamics, species-independent mT scaling was predicted in Ref. [46].

The intercept of the correlation function—the correlation strength, i.e., λ—is shown in
Figure 4. Values extracted from the fits show that it is close to unity, as is to be expected
based on the small fraction of decay kaons present in the system.
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]2 [GeV/cTm
0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74

R
 [

fm
]

0

2

4

6

8

10

12

14

+K+K

-K-K

STAR Preliminary
 = 200 GeV (year 2016)NNsAu+Au 

Centrality: 0-30%

Figure 3. R as a function of mT for 0–30% centrality. The hollow, blue squares denote positively charged
kaon pairs and the solid, and blue circles denote negatively charged kaon pairs, along with their error
bars. The systematic uncertainties are shown as hollow (K+K+) and shaded (K−K−) rectangles.

]2 [GeV/cTm
0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74

λ

0

0.5

1

1.5

2

2.5

3

+K+K

-K-K

STAR Preliminary
 = 200 GeV (year 2016)NNsAu+Au 

Centrality: 0-30%

Figure 4. λ as a function of mT for 0–30% centrality. The hollow, blue squares denote positively
charged kaon pairs, and the solid, blue circles denote negatively charged kaon pairs, along with their
error bars. The systematic uncertainties are shown as hollow (K+K+) and shaded (K−K−) rectangles.

The extent of the anomalous diffusion might be gleaned from the Lévy exponent
(α) as shown in Figure 5, also illustrating the values corresponding to the Gaussian and
Cauchy distributions, with dashed and dotted blue lines, respectively. The Lévy exponent
is observed to have values between those two extremes, indicating power-law behaviour
and the likely existence of anomalous diffusion. The extracted values of α∼1.0–1.5 for
kaons are similar to PHENIX’s pion results, with απ∼1.2 in the same transverse mass range.
ακ not being smaller than απ hints at the existence of other factors on top of anomalous
diffusion, contributing to the appearance of non-Gaussian source shapes. However, the
current statistics prevent the drawing of more definitive conclusions.
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]2 [GeV/cTm
0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74

α

0

0.5

1

1.5

2

2.5

3
STAR Preliminary

 = 200 GeV (year 2016)NNsAu+Au 
Centrality: 0-30%

+K+K -K-K
Cauchy distribution
Gaussian distribution

Figure 5. α as a function of mT for 0–30% centrality. The hollow, blue squares denote positively
charged kaon pairs, and the solid, blue circles denote negatively charged kaon pairs, along with their
error bars. The systematic uncertainties are shown as hollow (K+K+) and shaded (K−K−) rectangles.

6. Summary

Preliminary analysis of data collected by STAR from RHIC’s 2016 BES√sNN = 200 GeV
Au + Au collisions suggests a non-Gaussian, Lévy-stable source shape for pairs of the
identically charged kaons produced in the collisions. The Lévy-stability exponent ακ is
observed to be comparable to that of like-sign pion pairs obtained from PHENIX.

However, anomalous diffusion may not be solely responsible for the heavy tails
observed in the source distributions, as suggested by the comparability of ακ to απ . It is
to be noted that, a complete systematic uncertainty analysis, which is currently ongoing,
is required to draw definitive conclusions about any and all claims made herein. Because
Lévy-stable sources can arise in strongly interacting systems due to their proximity to the
QCD critical end point at higher chemical potentials, similar studies at lower beam energies
would likely strengthen the search for the QCD critical end point.
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46. Csanád, M.; Csörgő, T. Kaon HBT radii from perfect fluid dynamics using the Buda-Lund model. Acta Phys. Polon. Supp. 2008,

1, 521–524.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/0370-2693(91)91541-3
http://dx.doi.org/10.1016/S0370-2693(98)00653-4
http://dx.doi.org/10.3390/universe5060133
http://dx.doi.org/10.1103/PhysRevC.102.064912
http://dx.doi.org/10.1103/PhysRevLett.103.142301

	Introduction
	Correlations
	Lévy Distribution
	Measurement
	Results
	Summary
	References

