Introduction	Electric flux	Gauss' law	Applications	Conductors	Summary
0	0000	00	000000	00	00

The Gauss' law

Ayon Mukherjee

Course: Demo

Introduction	Electric flux	Gauss' law	Applications	Conductors	Summary
O	0000	00	000000	00	00
Outline					

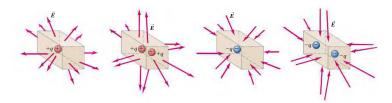
Introduction •	Electric fl	ux	Gauss' 00	law	Applications	Conductors 00	Summary 00
C	 1		C. 1.1	0	6.0	2.1	

Symmetries, electric fields & scope of Gauss' law

- Symmetries of systems as important tools for simplifying problems.
- Scope of Gauss' law:
 - A restatement of Coulomb's law.
 - Given any general distribution of charge, surround it with an **imaginary surface** that encloses the charge.
 - Look at the electric field at various points on this surface.
 - Establish a relationship between the field at all the points on the surface and the total charge enclosed within the surface.
 - A tremendously useful relationship!
- If the electric-field pattern is known in a given region, what can we determine about the charge distribution in that region?

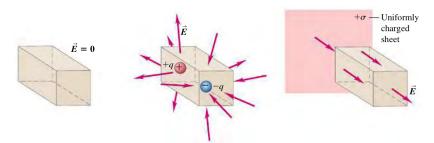
Introduction	Electric flux	Gauss' law	Applications	Conductors	Summary
O	•000	00	000000	00	00
Electric f	lux I: Conce	ents			

- "Flux" comes from a Latin word, meaning "flow".
- If the electric-field vectors point out of a surface, we say that there is an **outward electric flux**.
- If the electric-field vectors point into a surface, we say that there is an **inward electric flux**.
- More charges inside a closed surface cause a higher flux.
- Positive (+ve) charges inside a closed surface cause an outward flux.
- Negative (-ve) charges inside a closed surface cause an inward flux.
- What happens when there's no net charge inside?



Introduction	Electric flux	Gauss' law	Applications	Conductors	Summary
O	0000	00	000000	00	00
Electric f	lux II: Char	ge depende	ence		

- In the absence of charges, $\vec{E} = 0$ everywhere, thus the flux is zero.
 - When the net charge is zero, *i.e.* +q + (-q) = 0, the number of field-lines moving into and out of the closed surface is the same. Thus, the inward and outward fluxes cancel each other out; resulting in a net flux of zero.
 - In the presence of an external field, again the number of field-lines moving into and out of the closed surface is the same. Thus, the inward and outward fluxes cancel out to result in a net flux of zero.



Introduction O	Electric flux	Gauss' law 00	Applications 000000	Conductors	Summary 00
Electric f	lux III: Obs	ervations			

- Whether there is a net outward or inward electric flux through a closed surface depends on the sign of the enclosed net-charge.
- Charges outside a closed surface do not give a net electric flux through the closed surface.
- The net electric flux is directly proportional to the net amount of charge enclosed within the surface, but is otherwise independent of the size of the closed surface.
- These observations are a qualitative statement of Gauss' law.

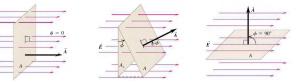
Introduction	Electric flux	Gauss' law	Applications	Conductors	Summary
O		00	000000	00	00
Electric f	lux IV: Forr	nulation			

- Flux through a surface can be defined as the product of the average perpendicular component of \vec{E} and the area of the surface: $\vec{E} \cdot \vec{S}$.
- For the total flux through a closed surface, the individual fluxes through the different faces need to be summed over:

$$\Phi = \vec{\boldsymbol{E}} \cdot \vec{\boldsymbol{A}} = \vec{\boldsymbol{E}} \cdot \vec{\boldsymbol{S}}_1 + \vec{\boldsymbol{E}} \cdot \vec{\boldsymbol{S}}_2 + ... + \vec{\boldsymbol{E}} \cdot \vec{\boldsymbol{S}}_n \ .$$

• For a non-uniform electric field or a curved surface, we divide A into many small elements dA, each of which has a unit vector \hat{n} perpendicular to it and a vector area $d\vec{A} = \hat{n} dA$ to obtain:

$$\Phi = \oint_{S} \vec{E} \cdot d\vec{A}$$
 .



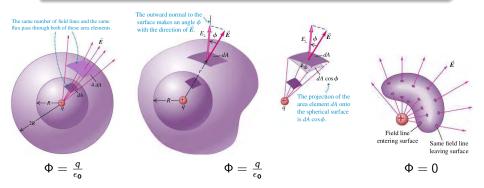
Introduction	Electric flux	Gauss' law	Applications	Conductors	Summary
0	0000	•0	000000	00	00

Gauss' law I: Introduction

Statement

The total electric flux through any closed surface is equal to the net electric charge enclosed by the surface, divided by ϵ_0 .

$$\Phi = \oint_{S} \vec{\boldsymbol{E}} \cdot d\vec{\boldsymbol{A}} = \frac{Q_{\text{encl}}}{\epsilon_{0}}$$



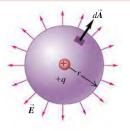
Introduction	Electric flux	Gauss' law	Applications	Conductors	Summary
O	0000	⊙●	000000	00	00
Gauss' lav	v II: Proble	m-solving			

- Identify the relevant concepts: Gauss' law is most useful when the charge distribution has spherical, cylindrical or planar symmetry.
- Set up the problem using the following steps:
 - List the known and unknown quantities.
 - Identify the target variable.
 - Select the appropriate closed, imaginary Gaussian surface.
- Execute the solution as follows:
 - Determine the size and placement of your Gaussian surface.
 - Evaluate the integral $\oint_S \vec{E} \cdot d\vec{A}$.
 - Use Gauss' law to obtain the target variable.
- Evaluate your answer:

If your result is a function that describes how the magnitude of the electric field varies with position, ensure that it makes sense.

Introduction	Electric flux	Gauss' law	Applications	Conductors	Summary
O	0000	00	•00000		00

Applications I: Point charge



Calculation of electric field, given:

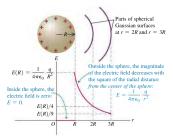
- net enclosed charge $= \pm q$,
- radius of Gaussian sphere = r &
- $\vec{E} \parallel d\vec{A}$ everywhere.

$$\therefore \oint_{S} \vec{E} \cdot d\vec{A} = 4\pi r^{2} E = \pm \frac{q}{\epsilon_{0}}$$

$$\Rightarrow E(r) = \pm \frac{1}{4\pi\epsilon_0} \frac{q}{r^2}$$

Introduction	Electric flux	Gauss' law	Applications	Conductors	Summary
0	0000	00	00000	00	00

Applications II: Spherical conductor



Calculation of electric field:

- I. Inside the sphere, given:-
- net enclosed charge = 0 &
 r < R.

$$\therefore \oint_{S} \vec{E} \cdot d\vec{A} = 4\pi r^{2} E = 0$$

$$\implies$$
 $E = 0$

- II. At the surface, given:-
- net enclosed charge = +q,

•
$$\vec{E} \parallel d\vec{A}$$
 everywhere.

$$\therefore \oint_{S} \vec{\boldsymbol{E}} \cdot d\vec{\boldsymbol{A}} = 4\pi R^{2} E = \frac{q}{\epsilon_{0}}$$

$$\implies \boxed{E = \frac{1}{4\pi\epsilon_0} \frac{q}{R^2}}$$

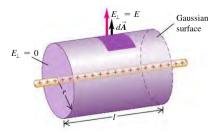
- III. Outside the sphere, given:-
- net enclosed charge = +q,

$$\therefore \oint_{S} \vec{E} \cdot d\vec{A} = 4\pi R^{2} E = \frac{q}{\epsilon_{0}}$$

$$\implies E(r) = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2}$$

Introduction O	Electric flux 0000	Gauss' law 00	Applications	Conductors	Summary 00

Applications III: Uniform line charge



Calculation of electric field, given:

- linear charge density = $+\lambda$,
- cylindrical Gaussian surface, with radius *r* and arbitrary length *l*, coaxial with wire and with ends perpendicular to wire,
- $\vec{E} \parallel d\vec{A}$ along curved surface &
- $\vec{E} \perp d\vec{A}$ along plane surfaces.

$$\therefore \oint_{S} \vec{E} \cdot d\vec{A} = \int_{C} \vec{E} \cdot d\vec{A} + \int_{P} \vec{E} \cdot d\vec{A}$$
$$= 2\pi r |E + 0$$
$$= 2\pi r |E .$$

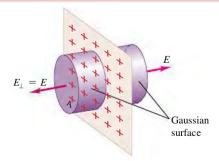
Now, $Q_{encl} = \lambda I$. Thus:

$$2\pi r I E = \frac{\lambda I}{\epsilon_0}$$

$$\implies E(r) = \frac{1}{2\pi\epsilon_0} \frac{\lambda}{r}$$

Introduction	Electric flux	Gauss' law	Applications	Conductors	Summary
0	0000	00	000000	00	00

Applications IV: Infinite plane sheet of charge



$$\oint_{S} \vec{E} \cdot d\vec{A} = \int_{C} \vec{E} \cdot d\vec{A} + \int_{P} \vec{E} \cdot d\vec{A}$$
$$= 0 + \int_{P_{1}} \vec{E} \cdot d\vec{A} + \int_{P_{2}} \vec{E} \cdot d\vec{A}$$
$$= 2EA .$$

Calculation of electric field, given:

- surface charge density = $+\sigma$,
- cylindrical Gaussian surface with ends of area A and with axis ⊥ to sheet of charge,
- $\vec{E} \perp d\vec{A}$ along curved surface &
- $\vec{E} \parallel d\vec{A}$ along plane surfaces.

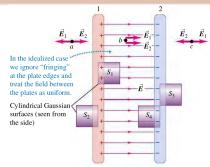
Now,
$$Q_{encl} = \sigma A$$
. Thus:

$$2EA = \frac{\sigma A}{\epsilon_0}$$

 F	σ
 <u> </u>	$2\epsilon_0$

Introduction	Electric flux	Gauss' law	Applications	Conductors	Summary
0	0000	00	000000	00	00

Applications V: Charged parallel conducting plates



Calculation of electric field, given:

- surface charge density = $\pm \sigma$,
- cylindrical Gaussian surfaces with ends of area A and with one end of each lying within a plate,
- $\vec{E} \perp d\vec{A}$ along curved surfaces &
- $\vec{E} \parallel d\vec{A}$ along plane surfaces.

Consider S_1 :

$$\oint_{S} \vec{E} \cdot d\vec{A} = EA = \frac{Q_{\text{encl}}}{\epsilon_{0}} = \frac{\sigma A}{\epsilon_{0}}$$

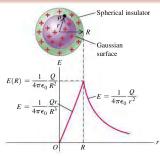
Now with S_4 : $\oint_{S} \vec{E} \cdot d\vec{A} = -EA = \frac{Q_{encl}}{\epsilon_0} = -\frac{\sigma A}{\epsilon_0}$

However, with $S_2 \& S_3$: $\oint_S \vec{E} \cdot d\vec{A} = EA = \frac{Q_{encl}}{\epsilon_0} = 0$

 $\implies E = 0$

Introduction	Electric flux	Gauss' law	Applications	Conductors	Summary
0	0000	00	000000	00	00

Applications VI: Uniformly charged spherical insulator



Calculation of electric field:

- I. Inside the sphere, given:-
- volume charge density = +ρ &
 r < R.

$$\therefore \oint_{S} \vec{E} \cdot d\vec{A} = 4\pi r^{2} E$$

Now, $Q_{encl} = \rho V$ gives:

$$4\pi r^{2}E = \frac{Q}{\epsilon_{0}\left(\frac{4}{3}\pi R^{3}\right)}\left(\frac{4}{3}\pi r^{3}\right)$$
$$\implies \boxed{E(r) = \frac{1}{4\pi\epsilon_{0}}\frac{Qr}{R^{3}}}$$

II. Outside the sphere, given:-

• net enclosed charge
$$= +Q$$
,

• r > R & • $\vec{E} \parallel d\vec{A}$ everywhere.

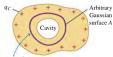
$$\therefore \oint_{S} \vec{E} \cdot d\vec{A} = 4\pi r^{2} E = \frac{Q}{\epsilon_{0}}$$

$$\implies \boxed{E(r) = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2}}$$

Introduction	Electric flux	Gauss' law	Applications	Conductors	Summary
O	0000	00	000000	●○	00
Conducto	ors I: Cavitie	es			

- For uncharged conductor with empty cavity inside, Gauss' law mandates that net charge on surface of cavity be zero, because $\vec{E} = 0$ everywhere on the Gaussian surface.
- For uncharged conductor with charge +q inside cavity, Gauss' law mandates that charge +q appear on its outer surface, because $\vec{E} = 0$ everywhere on the Gaussian surface.
- For charged conductor with charge +q inside cavity; carrying charge q_C; total charge on outer surface is q_C + q.
- Anything inside conductor's cavity is **electrostatically shielded** from fields outside—used to build **Faraday cages**.

The charge q_C resides entirely on the surface of the conductor. The situation is electrostatic, so $\vec{E} = 0$ within the conductor.

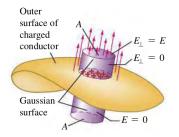


Because $\vec{E} = 0$ at all points within the conductor, the electric field at all points on the Gaussian surface must be zero.

For \vec{E} to be zero at all points on the Gaussian surface, the surface of the cavity must have a total charge -q.

Introduction	Electric flux	Gauss' law	Applications	Conductors	Summary
O	0000	00	000000	0	00
Conducto	ors II: Surfa	ce charge			

- The \vec{E} field at a point just outside a conductor is directly proportional to the surface charge density σ at that point.
- At the surface of spherical conductors: $E = \frac{1}{4\pi\epsilon_0} \frac{q}{R^2}$.
- Surface charge density defined as: $\sigma = \frac{\text{Total charge}}{\text{Total surface area}}$.
- Thus, at the surface of spherical conductors: $E = \frac{\sigma}{\epsilon_0}$.
- Similar results obtained for charged plates.
- In general, at the surface of a charged conductor:



- $\vec{E} \parallel \vec{A}$ for outer plane surface,
- $\vec{E} \perp$ outer curved surface &
- $\vec{E} = 0$ inside conductor.

$$\therefore E = E_{\perp} = \frac{\sigma}{\epsilon_0}$$

Introduction	Electric flux	Gauss' law	Applications	Conductors	Summary
0	0000	00	000000	00	O

Electric flux

Electric flux is a measure of the "flow" of electric field through a surface. It is equal to the product of an area element and the perpendicular component of \vec{E} , integrated over a surface.

$$\Phi = \int_{S} \vec{E} \cdot d\vec{A} = \int_{S} E_{\perp} dA$$

Gauss' law

Gauss' law states that the total electric flux through a closed surface, which can be written as the surface integral of the component of \vec{E} normal to the surface, equals a constant times the total charge $Q_{\rm encl}$ enclosed by the surface. It's logically equivalent to Coulomb's law, but its use greatly simplifies problems with a high degree of symmetry.

$$\Phi = \oint_{S} \vec{E} \cdot d\vec{A} = \oint_{S} E_{\perp} dA = \frac{Q_{\text{encl}}}{\epsilon_{0}}$$

When excess charge is placed on a solid conductor and is at rest, it resides entirely on the surface. $\vec{E} = 0$ everywhere inside the conductor.

Introduction	Electric flux	Gauss' law	Applications	Conductors	Summary
0	0000	00	000000	00	00

Electric fields of various symmetric charge distributions					
Charge distribution	Position	Electric field			
Single point: q	Distance <i>r</i> from <i>q</i>	$E(r) = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2}$			
Conducting sphere: <i>R</i> , <i>q</i>	Outside sphere, $r > R$ Inside sphere, $r < R$	$E(r) = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2}$ $E = 0$			
Infinite wire: λ	Distance r from wire	$E(r) = \frac{1}{2\pi\epsilon_0} \frac{\lambda}{r}$			
Insulating sphere: R, Q	Outside sphere, $r > R$ Inside sphere, $r < R$	$E(r) = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2}$ $E(r) = \frac{1}{4\pi\epsilon_0} \frac{Qr}{R^3}$			
Infinite sheet: σ	Any point	$E = \frac{\sigma}{2\epsilon_0}$			
Conducting plates: $\pm \sigma$	Any point between plates	$E = \frac{\sigma}{\epsilon_0}$			
Conductor: σ	At surface of conductor	$E = \frac{\sigma}{\epsilon_0}$			