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Symmetries, electric fields & scope of Gauss’ law

Symmetries of systems as important tools for simplifying problems.

Scope of Gauss’ law:
A restatement of Coulomb’s law.
Given any general distribution of charge, surround it with an
imaginary surface that encloses the charge.
Look at the electric field at various points on this surface.
Establish a relationship between the field at all the points on
the surface and the total charge enclosed within the surface.
A tremendously useful relationship!

If the electric-field pattern is known in a given region, what can we
determine about the charge distribution in that region?
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Electric flux I: Concepts

“Flux” comes from a Latin word, meaning “flow”.

If the electric-field vectors point out of a surface, we say that there
is an outward electric flux.

If the electric-field vectors point into a surface, we say that there is
an inward electric flux.

More charges inside a closed surface cause a higher flux.

Positive (+ve) charges inside a closed surface cause an outward flux.

Negative (−ve) charges inside a closed surface cause an inward flux.

What happens when there’s no net charge inside?
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Electric flux II: Charge dependence

In the absence of charges, ~E = 0 everywhere, thus the flux is zero.

When the net charge is zero, i.e. +q + (−q) = 0, the number of
field-lines moving into and out of the closed surface is the same.
Thus, the inward and outward fluxes cancel each other out;
resulting in a net flux of zero.

In the presence of an external field, again the number of field-lines
moving into and out of the closed surface is the same. Thus, the
inward and outward fluxes cancel out to result in a net flux of zero.
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Electric flux III: Observations

Whether there is a net outward or inward electric flux through a
closed surface depends on the sign of the enclosed net-charge.

Charges outside a closed surface do not give a net electric flux
through the closed surface.

The net electric flux is directly proportional to the net amount of
charge enclosed within the surface, but is otherwise independent of
the size of the closed surface.

These observations are a qualitative statement of Gauss’ law.
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Electric flux IV: Formulation

Flux through a surface can be defined as the product of the average
perpendicular component of ~E and the area of the surface: ~E · ~S .
For the total flux through a closed surface, the individual fluxes
through the different faces need to be summed over:

Φ = ~E · ~A = ~E · ~S1 + ~E · ~S2 + ...+ ~E · ~Sn .

For a non-uniform electric field or a curved surface, we divide A into
many small elements dA, each of which has a unit vector n̂
perpendicular to it and a vector area d~A = n̂ dA to obtain:

Φ =

∮
S

~E · d~A .
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Gauss’ law I: Introduction

Statement
The total electric flux through any closed surface is equal to the
net electric charge enclosed by the surface, divided by ε0.

Φ =

∮
S

~E · d~A =
Qencl

ε0

Φ = q
ε0

Φ = q
ε0

Φ = 0
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Gauss’ law II: Problem-solving

Identify the relevant concepts:
Gauss’ law is most useful when the charge distribution has spherical,
cylindrical or planar symmetry.

Set up the problem using the following steps:
List the known and unknown quantities.
Identify the target variable.
Select the appropriate closed, imaginary Gaussian surface.

Execute the solution as follows:
Determine the size and placement of your Gaussian surface.
Evaluate the integral

∮
S
~E · d~A.

Use Gauss’ law to obtain the target variable.

Evaluate your answer:
If your result is a function that describes how the magnitude of the
electric field varies with position, ensure that it makes sense.
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Applications I: Point charge

Calculation of electric field, given:

net enclosed charge = ±q,

radius of Gaussian sphere = r &

~E ‖ d~A everywhere.

∴
∮
S

~E · d~A = 4πr2E = ± q

ε0

=⇒ E (r) = ± 1
4πε0

q

r2
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Applications II: Spherical conductor

Calculation of electric field:

I. Inside the sphere, given:-
net enclosed charge = 0 &
r < R.

∴
∮
S

~E · d~A = 4πr2E = 0

=⇒ E = 0

II. At the surface, given:-
net enclosed charge = +q,
r = R &
~E ‖ d~A everywhere.

∴
∮
S

~E · d~A = 4πR2E =
q

ε0

=⇒ E =
1

4πε0
q

R2

III. Outside the sphere, given:-
net enclosed charge = +q,
r > R &
~E ‖ d~A everywhere.

∴
∮
S

~E · d~A = 4πR2E =
q

ε0

=⇒ E (r) =
1

4πε0
q

r2
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Applications III: Uniform line charge

Calculation of electric field, given:

linear charge density = +λ,
cylindrical Gaussian surface, with
radius r and arbitrary length l ,
coaxial with wire and with ends
perpendicular to wire,
~E ‖ d~A along curved surface &
~E ⊥ d~A along plane surfaces.

∴
∮
S

~E · d~A =

∫
C

~E · d~A +

∫
P

~E · d~A

= 2πrlE + 0
= 2πrlE .

Now, Qencl = λl . Thus:

2πrlE =
λl

ε0

=⇒ E (r) =
1

2πε0
λ

r
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Applications IV: Infinite plane sheet of charge

Calculation of electric field, given:

surface charge density = +σ,
cylindrical Gaussian surface with
ends of area A and with axis ⊥
to sheet of charge,
~E ⊥ d~A along curved surface &
~E ‖ d~A along plane surfaces.

∴
∮
S

~E · d~A =

∫
C

~E · d~A +

∫
P

~E · d~A

= 0 +

∫
P1

~E · d~A +

∫
P2

~E · d~A

= 2EA .

Now, Qencl = σA. Thus:

2EA =
σA

ε0

=⇒ E =
σ

2ε0
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Applications V: Charged parallel conducting plates

Calculation of electric field, given:

surface charge density = ±σ,
cylindrical Gaussian surfaces with
ends of area A and with one end
of each lying within a plate,
~E ⊥ d~A along curved surfaces &
~E ‖ d~A along plane surfaces.

Consider S1:∮
S

~E · d~A = EA =
Qencl

ε0
=
σA

ε0

=⇒ E =
σ

ε0

Now with S4:∮
S

~E · d~A = −EA =
Qencl

ε0
= −σA

ε0

=⇒ E =
σ

ε0

However, with S2 & S3:∮
S

~E · d~A = EA =
Qencl

ε0
= 0

=⇒ E = 0
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Applications VI: Uniformly charged spherical insulator

Calculation of electric field:

I. Inside the sphere, given:-
volume charge density = +ρ &
r < R.

∴
∮
S

~E · d~A = 4πr2E

Now, Qencl = ρV gives:

4πr2E =
Q

ε0
( 4

3πR
3
) (4

3
πr3
)

=⇒ E (r) =
1

4πε0
Qr

R3

II. Outside the sphere, given:-
net enclosed charge = +Q,
r > R &
~E ‖ d~A everywhere.

∴
∮
S

~E · d~A = 4πr2E =
Q

ε0

=⇒ E (r) =
1

4πε0
Q

r2
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Conductors I: Cavities

For uncharged conductor with empty cavity inside, Gauss’ law
mandates that net charge on surface of cavity be zero, because
~E = 0 everywhere on the Gaussian surface.

For uncharged conductor with charge +q inside cavity, Gauss’
law mandates that charge +q appear on its outer surface, because
~E = 0 everywhere on the Gaussian surface.

For charged conductor with charge +q inside cavity; carrying
charge qC ; total charge on outer surface is qC + q.

Anything inside conductor’s cavity is electrostatically shielded
from fields outside—used to build Faraday cages.
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Conductors II: Surface charge

The ~E field at a point just outside a conductor is directly
proportional to the surface charge density σ at that point.

At the surface of spherical conductors: E = 1
4πε0

q
R2 .

Surface charge density defined as: σ = Total charge
Total surface area .

Thus, at the surface of spherical conductors: E = σ
ε0
.

Similar results obtained for charged plates.

In general, at the surface of a charged conductor:

~E ‖ ~A for outer plane surface,
~E ⊥ outer curved surface &
~E = 0 inside conductor.

∴ E = E⊥ =
σ

ε0
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Electric flux
Electric flux is a measure of the “flow” of electric field through a surface.
It is equal to the product of an area element and the perpendicular
component of ~E , integrated over a surface.

Φ =

∫
S

~E · d~A =

∫
S

E⊥dA

Gauss’ law
Gauss’ law states that the total electric flux through a closed surface,
which can be written as the surface integral of the component of ~E
normal to the surface, equals a constant times the total charge Qencl
enclosed by the surface. It’s logically equivalent to Coulomb’s law, but its
use greatly simplifies problems with a high degree of symmetry.

Φ =

∮
S

~E · d~A =

∮
S

E⊥dA =
Qencl

ε0

When excess charge is placed on a solid conductor and is at rest, it
resides entirely on the surface. ~E = 0 everywhere inside the conductor.
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Electric fields of various symmetric charge distributions

Charge distribution Position Electric field

Single point: q Distance r from q E (r) = 1
4πε0

q
r2

Conducting sphere: R, q Outside sphere, r > R E (r) = 1
4πε0

q
r2

Inside sphere, r < R E = 0

Infinite wire: λ Distance r from wire E (r) = 1
2πε0

λ
r

Insulating sphere: R, Q Outside sphere, r > R E (r) = 1
4πε0

Q
r2

Inside sphere, r < R E (r) = 1
4πε0

Qr
R3

Infinite sheet: σ Any point E = σ
2ε0

Conducting plates: ±σ Any point between plates E = σ
ε0

Conductor: σ At surface of conductor E = σ
ε0
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