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HIC: Schematic

Source: Chun Shen, The Ohio State University
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HIC: Stages of evolution I

Pre-equilibrium:

Beginning in the immediate aftermath of the collision between the
projectile and target nuclei, this stage can be described by binary
collisions of two nucleons.
The kinetic energy of these collisions is then transferred to the
produced particles and fields; both of the partonic (quark) and
hadronic type.
Following this, the produced particles and fields start interacting with
the reaction products of other constituent collisions, thereby producing
more particles and resulting in a system with high enough energy and
particle density for the second stage to set in.
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HIC: Stages of evolution II

Equilibrium expansion:

After the initial product particles scatter multiple times, the system
reaches a local thermal equilibrium.
It exhibits collective behaviour and can be characterised by intensive
quantities like pressure, energy density and particle-number density.
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HIC: Stages of evolution III

Decoupling:

Following the equilibrium expansion, the system dilutes to an extent
that local or chemical equilibrium conditions are no longer fulfilled.
The hadrons are formed at these stage, and having decoupled from the
system, they start flying into the detectors to be measured.
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HIC: Transport models vs. effective models

1 The pre-equilibrium & decoupling stages (I & III) deal
predominantly with particles, since the density; at ground zero; is
relatively low - w.r.t. the equilibrium stage (II) - but the
temperature and energy are high. This makes relativistic,
microscopic transport models perfect for tracking these two stages.

2 The equilibrium stage (II) predominantly deals with fields. Both the
temperature and the density are high. This provides conditions
germane to the application of hydrodynamics, which requires an
equation-of-state (EOS) to operate. This EOS is provided by
effective-Lagrangian, thermodynamic models.
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Kinetic theory

Kinetic theory: Microscopic quantities I

These phase-space variables are defined using unit convention
c = kB = 1 & metric gµν = gµν = diag(1,−1,−1,−1)

Spacetime
The 3 spatial co-ordinates and time span a 4-D space, called
spacetime or position-space.
The coordinates are composed of time, t, and the position
3-vector, ~r as xµ = (t, ~r) = (x0, ~x).
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Kinetic theory

Kinetic theory: Microscopic quantities II

Four-momentum
Defined as pµ = (p0, ~p), with p0 =

√
|~p|2 + m2; since p0 = E at

relativistic energies.
Transforms as a time-like vector (i.e., qµqµ > 0), with the
normalisation:

(p0)2 − |~p|2 =
∑
µ

pµpµ = pµpµ = m2 . (1)

The covariant and contravariant components are related as:

pµ = gµνp
ν (2)

=⇒ pµ = (p0, ~p) & pµ = (p0,−~p) . (3)
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Kinetic theory

Kinetic theory: Microscopic quantities III

Four-velocity
Time-like unit vector, pointing in the direction-of-motion, with
components (u0, ~v); where ~v = ~p/p0.
Normalisation and definition:

uµuµ = +1 , (4)
uµ = (γ, γ~v) & uµ = (γ,−γ~v) . (5)

γ = 1/
√

1− |~v |2 is the Lorentz factor.
Proper time of an object, moving with 4-velocity uµ is τ = t/γ.
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Kinetic theory

Kinetic theory: Microscopic quantities IV

World-line of a particle in space-time

Space-like unit 4-vectors: ΛµΛµ = −1.
Time-like unit 4-vectors: ΛµΛµ = +1.
Space- and time-like vectors can’t be transformed into each other
by a proper Lorentz transformation.
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Kinetic theory

Kinetic theory: Microscopic quantities V

The nuclear-collision co-ordinate system
In particle and nuclear physics, it is practical to introduce a
special co-ordinate system, where the spatial z-axis is parallel to
the beam of the accelerator.
In general, non-central collisions, the 3-vector connecting the
centres of a beam-particle and a target-particle points out in
another direction. The component of this vector orthogonal to
the beam is the impact-vector, ~b, which is a two-dimensional
vector. The direction of this vector is denoted usually as the
x-direction. These two axes, x and z , span the so called reaction
plane of a given collision [x , z ].
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Kinetic theory

Kinetic theory: Microscopic quantities VI:- Rapidity
Rapidity

Defined as the generalised velocity:

y = tanh-1 v‖ = tanh-1

(
p‖
p0

)
=

1
2

ln

(
p0 + p‖
p0 − p‖

)
. (6)

For small velocities: y ≈ v‖.
If a particle is moving after the collision into some direction ~v , its
phase space position is given by the coordinates (y , p⊥/m).
The velocity is limited to 1 (c); but rapidity range is (−∞,∞).
Transformation properties, transverse mass and pseudo-rapaidity:

If y1 is the rapidity of a particle in frame K1, and y2 is the rapidity
of frame K1 w.r.t. K2, then y = y1 + y2 is the particle’s rapidity
in K2; i.e.; rapidity is additive under a Lorentz transformation.
Transverse mass:
m⊥ =

√
m2 + p2⊥ = E/ cosh(y) = p0/ cosh(y) .

Pseudo-rapidity, η: for E → ∞, y → η = ln(cot Θ/2), where Θ
is the polar angle of the emitted particle.
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Kinetic theory

Kinetic theory: Macroscopic quantities I

Local particle density
A function of spacetime: n̂ ≡ n̂(t, ~r) ≡ n̂(xµ) ≡ n̂(x).

Number of particles in a 3-volume (3-D hypersurface of 4-D
spacetime) element ∆3x : N̂ = n̂(x)∆3x .
n̂ is a scalar, but is not Lorentz invariant, since the 3-volume
element ∆3x is not Lorentz invariant.
N̂ is an invariant scalar.
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Kinetic theory

Kinetic theory: Macroscopic quantities II

Local particle current
Particle current across unit area per unit time: ~j ≡ ~j(x).
When two equally sized nuclei collide; in their centre-of-mass
system; the currents are directed along the beam (z-axis) and
they are opposite to each other in the projectile and target
regions. In the overlap region (shaded area), the two currents
cancel each other out and the resulting current vanishes (if
side-ward flow and squeeze-out of the matter are neglected).
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Kinetic theory

Kinetic theory: Macroscopic quantities III

Particle 4-current
A 4-vector constructed by combining the local particle density
and the local particle current as:

Nµ(x) = (n̂(x), ~j(x)) . (7)

Particle distribution
The distribution of particles, f (x , p), in the 6-D
(x0, x1, x2, p0, p1, p2) space, or phase-space.
Gives the no. of particles, N, in a phase-space volume element as:

N = f (x , p) ∆3x ∆3p . (8)
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Kinetic theory

Kinetic theory: Macroscopic quantities IV

f (x , p) & Nµ(x) can be used to obtain:

n̂(x) =

∫
d3p f (x , p) , (9)

~j(x) =

∫
d3p ~v f (x , p) & (10)

Nµ(x) =

∫
d3p

p0 pµ f (x , p) (11)

It can be shown (cf.: Csernai’s book) that
∫

d3p
p0 and f (x , p) are both

invariant scalars =⇒ Nµ transforms like a 4-vector, since pµ is a
4-vector.
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Kinetic theory

Kinetic theory: Macroscopic quantities V:- T µν I

The energy-momentum tensor
A macroscopic, 16-component tensor; characterising the matter.
Components:

Energy density : T 00(x) =

∫
d3p p0 f (x , p) =

∫
d3p

p0 p0 p0 f (x , p)

Energy flow : T 0i (x) =

∫
d3p p0 ~v f (x , p) =

∫
d3p

p0 p0 ~p f (x , p)

Mom. density : T i0(x) =

∫
d3p ~p f (x , p) =

∫
d3p

p0 ~p p0 f (x , p)

Pressure tensor : T ij(x) =

∫
d3p ~p · ~v f (x , p) =

∫
d3p

p0 ~p · ~p f (x , p)

Tµν(x) =

∫
d3p

p0 pµpν f (x , p) (12)
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Kinetic theory

Kinetic theory: Macroscopic quantities VI:- T µν II

Properties of the energy-momentum tensor:
It is the second moment of the distribution function f (x , p).
It is symmetric: Tµν = T νµ.
It does not include the particles’ fields and potential energies.
It only includes their rest-masses and kinetic energies.
For particle interactions via fields, the contribution of the fields
need to be added to the energy-momentum tensor.
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Kinetic theory

Kinetic theory: Macroscopic quantities VII:- uµ, ∆µν & LRF

The flow vel. of a medium, uµ, is a unit vector parallel to the world
line of the particles or the direction of the energy flow.
The orthogonal projection operator:

∆µν = gµν − uµuν

(uνuν)
,

projects any 4-vector onto the 3-D hypersurface orthogonal to uµ.
The Local Rest Frame (LRF) is defined as the frame-of-reference
where uµ = (1, 0, 0, 0) = uµLRF .
In the LRF:

∆µν
LRF = ∆LRF

µν = diag(0,−1,−1,−1),
∆µ
ν (LRF ) = diag(0, 1, 1, 1),

N i = 0 =⇒ ∆µνN
µ = 0 &

T 0i = T i0 = 0 =⇒ ∆µαT
µνuν = 0.
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Kinetic theory

Kinetic theory: Macroscopic quantities VIII

Invariant scalar density: n = Nµuµ =⇒ n = N0
LRF .

Invariant energy density: ε = uµT
µνuν =⇒ ε = T 00

LRF .
Pressure tensor: Pµν = ∆µ

αT
αβ∆ν

β =⇒ P = δijT ij
LRF (pressure).

Tµν & Nµ in the LRF:

T
µν (0)
LRF =


ε 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

 , N
µ (0)
LRF = (n, 0, 0, 0) ; (13)

where the index 0 denotes the non-dissipative component, used in ideal
hydrodynamics.
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Kinetic theory

Kinetic theory: Mixtures

Particle distribution function in multi-component systems:
fk(x , pk) , k = 1, 2, 3...N ; with rest masses: pµk pµk = m2

k .
Particle 4-currents:

Nµ
k (x) =

∫
d3pk
p0
k

pµk f (x , pk) =⇒ Nµ =
∑
k

Nµ
k . (14)

Energy-momentum tensors:

Tµν
k (x) =

∫
d3pk
p0
k

pµk p
ν
k f (x , pk) =⇒ Tµν =

∑
k

Tµν
k . (15)

Conserved charge-currents (if the particle no. is not conserved):

Qµ
k (x) =

∫
d3pk
p0
k

qµk pµk f (x , pk) =⇒ Qµ =
∑
k

Qµ
k . (16)



Introduction Transport model approach Effective model approach Summary Appendix

Relativistic transport

Relativistic transport: The continuity equation

For negligibly small edges of the
4-volume ∆4x :∫

∆3σ

∫
∆3p

d3σµ
d3p

p0 pµ f (x , p)

(17)

→∮
∆3σ

∫
∆3p

d3σµ
d3p

p0 pµ f (x , p) = 0.

(18)

Using Gauss’ theorem &

∂

∂xµ
(pµf ) = ∂µ(pµf ) = pµ∂µf ,

with eqn. (18):∮
∆3σ

d3σµA
µ =

∫
∆4x

∂

∂xµ
Aµd4x

→∫
∆4x

∫
∆3p

d4x
d3p

p0 pµ∂µf (x , p) = 0;

(19)

the continuity equation looks like:

pµ∂µf (x , p) = 0 (20)
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Relativistic transport

Relativistic transport: The Boltzmann transport equation I

In the presence of external
forces, i.e., collisions,

the continuity eqn. looks
like:

pµ∂µf (x , p) = C(x , p) .

Here C is the collision integral; dependent
on:

the number of nucleons (particles)
around ~p: ∆3pf (x , p),

the number of nucleons (particles)
around ~p1: ∆3p1f (x , p1) and

the final state and configuration
volume intervals: ∆3p′,∆3p′1 & ∆4x ;

with the proportionality factor (transition
rate = W )

W (p, p1|p′, p′1)

p0p0
1p
′0p′01
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Relativistic transport

Relativistic transport: The Boltzmann transport equation II

The most general, multi-component, relativistic form of the BTE is:

pµk ∂µf (x , pk) =
N∑
l=1

Ckl(x , pk) (21)

where it can be shown (cf.: Csernai book), for a general k + l → i + j
collision:

Ckl(x , pk) =
1
2

N∑
i,j=1

∫
d3pl
p0
l

d3pi
p0
i

d3pj
p0
j

[
fi fjWij|kl − fk flWkl|ij

]
. (22)

Properties of the transition rate: Wkl|ij = Wkl|ji & Wkl|ij = Wij|kl
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Relativistic transport

Relativistic transport: Conservation laws from the BTE

The full BTE can be used to obtain the conservation laws:
For a microscopic quantity Ψk determined by the particle type (k),
position (x) and momentum (pk); which is conserved in a binary collision
k + l → i + j ; one has (cf.: Csernai book)

N∑
k,l=1

∫
d3pk
p0
k

ΨkCkl(x , pk) = 0 (23)

1 From eqns. (14), (21) & (23), particle no. conservation:
∂µN

µ =
∑

k ∂µN
µ
k = 0, with Ψk = 1.

2 From eqns. (16), (21) & (23), charge conservation:
∂µQ

µ =
∑

k ∂µQ
µ
k = 0, with Ψk = qk .

3 From eqns. (15), (21) & (23), energy-momentum conservation:
∂µT

µν =
∑

k ∂µT
µν
k = 0, with Ψk = pνk .
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Relativistic transport

Relativistic transport: The BTE epilogue

The conservation laws do not form a closed set of equations.
Tµν and Nµ should be defined, too.
In the transport theory, this is done through the distribution function,
which is known only if the solution to the BTE is known.
Thus, within the transport theory, these equations do not provide the
solution to a dynamical problem.
A sol. can be found by theorising the functional form of f (x , pk), or
One can start with an effective-solution of the BTE...
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The ultra-relativistic quantum molecular dynamics model

The UrQMD model: Basics

The Ultra-relativistic Quantum Molecular Dynamics model starts with
such an effective-solution of the relativistic BTE.
The presence of an external potential results in an additional term on
the LHS of eqn. (21).
Hadrons and strings, excited in high-energy binary collisions, form the
underlying degrees-of-freedom.
Over 50 different baryon and 40 different meson species are included.
It also has full particle-antiparticle symmetry, isospin-symmetry and
only flavour-SU(3) states.
During the stage I → II, transport → hydro. coupling; each particle is
described by a Gaussian distribution of its total E , p and ρB .
During the stage II → III, hydro. → transport coupling (or,
freeze-out); all the fluid elements are transformed back to hadrons,
which are then propagated via hadronic cascade.



Introduction Transport model approach Effective model approach Summary Appendix

The ultra-relativistic quantum molecular dynamics model

The UrQMD model: Simulation

Source: https://videos.cern.ch/record/1304862
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The ultra-relativistic quantum molecular dynamics model

The UrQMD model: Results
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The ultra-relativistic quantum molecular dynamics model

The UrQMD model: Afterword

The results are obtained with a variant of the UrQMD called the
hybrid-UrQMD—‘hybrid’ meaning that UrQMD has within it a hydro.
simulation added to (or, coupled to) the transport simulation.
Why do we need the hybrid?
Because, pure-transport UrQMD is INCAPABLE of producing
experimentally verifiable data. We have to use hydro. to match the
UrQMD results with experiment.
This proves that hydro. is actually one of the stages in the evolution of
a HIC system.
The schematic shown in slide 3 IS A CONJECTURE. We assume that
the evolution has—at least—3 stages. The fact that the evolution
actually, in reality, has a hydro. stage is PROVEN by the fact that
pure-transport UrQMD is incapable of reproducing experimental data.
So, hydro. HAS to exist =⇒ particles at high temperatures &
densities DO become fields =⇒ these fields DO contribute to the
QGP =⇒ the QGP HAS to exist!
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Open questions in HIC evolution

HIC evolution: Open questions

We know, for a fact, that we are sending in particles. We also know,
for a fact, that we get particles at the end. But, do we know for sure,
whether the hydro. (field-dominated) stage is the ONLY stage of
evolution in between the 2 transport (particle-dominated) stages?
We don’t! There might be more than one stage of evolution in
between the first and last transport stages.
Do we know EXACTLY WHEN the hydro. stage sets in? I.e., do we
know exactly when the system thermalises?
We don’t! We assume that it thermalises, if a few criteria are satisfied.
More interestingly, and recently, people have suggested that we could
use hydro. in the absence of thermalisation—if certain criteria are
satisfied. These are called the ‘hydrodynamisation criteria’. So, we can
apply hydro., but the system can still be outside thermal equilibrium.
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QCD

QCD: Basics I

A field is a physical quantity, expressed as a continuous function of
position, x : φ(x).
The Lagrangian density of a system of fields is a functional: L(φ(x)).
The second stage of the evolution of a heavy-ion collision is considered
to be a system of fields in thermal and dynamic equilibrium → it can
be studied using hydrodynamics.
Even in the non-dissipative (zeroth-order) case, the
equations-of-motion of hydrodynamics form an incomplete set of
equations, completed only by an equation-of-state (EOS) which
encapsulates the relationship between the state variables of the system:
P ≡ P(n, ε).
In order to obtain the EOS, the thermodynamics of the system needs
to be understood. For that, a knowledge of the partition function is
required. For that, an understanding of the theory of strong
interactions is needed.
QCD is the preeminent theory of strong interactions.
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QCD

QCD: Basics II:- The QCD Lagrangian

QCD Lagrangian:

LQCD = q(iγµDµ −M)q − 1
4
Fµνa F a

µν (24)

where
F a
µν = ∂µA

a
ν − ∂νAa

µ + gf abcA
b
µA

c
ν , (25)

with

αs(Q2) =
g2

4π
≈ 4π
β0 ln(Q2/Λ2)

(26)

Aµ are gluons, q are quarks, a = 1...8,M is a phenomenological,
colour-independent mass-matrix.
For Q2 � Λ2, perturbative approximations are possible.
For Q2 ∼ Λ2, perturbative calculations diverge with αs →∞.

Therefore, effective Lagrangians; with some properties of QCD – which
can be applicable in small-Q2 scenarios – are needed.
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QCD

QCD: Basics III:- Chiral symmetry & symmetry breaking I

LQCD possesses the symmetries of the strong interaction:

The U(1) transf., q(x)→ e−iθq(x), results in the conservation of the
baryon-no. current (Nöther’s theorem) and of the baryon no., B.
The chirality of an object, or system, prevents it from being congruent
to its mirror-image after a rotation around the mirror axis.
A vectorial, q → exp(−iΘa

VGa)q ≈ (1− iΘa
VGa)q & an axial-vectorial

transf., q → exp(−iγ5Θa
AGa)q ≈ (1− iγ5Θa

AGa)q can be defined.
LQCD , for mq = 0, is symmetric under these transformations.
DiagonalisingM to obtain: Lmq = −qmqq, breaks chiral symmetry
explicitly, but small quark masses → an approximate chiral symmetry.
Explicit SB: caused by a term in L that renders L 6= L′ under a
symmetry transf. q → q′.
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QCD

QCD: Basics IV:- Chiral symmetry & symmetry breaking II

If chiral symmetry were an exact (or approx.) symmetry of QCD, it
would cause a degeneracy between states of different parity, in
vacuum. But, the vacuum has a wide range of hadronic states; with a
mass hierarchy =⇒ the chiral symmetry of QCD is, most likely,
spontaneously broken in the vacuum.
Spontaneous SB: Not manifest in L (i.e., L = L′ under q → q′).
The, energetically, most favourable vacuum state is not symmetric
under q → q′.
Goldstone’s theorem: The spontaneous breaking of a continuous,
global symmetry implies the existence of massless & spinless bosons.
One can, therefore, have an effective theory that has:

a simplified Lagrangian; obtained by integrating out some d.o.f.’s
of QCD; with spontaneous chiral-symmetry breaking (SCSB),
pions (low mass & 0 spin) being realised as Goldstone bosons,
a mass term for the pions, breaking the lagrangian’s
chiral-symmetry explicitly – called explicit CSB (ECSB) &
all three phase-transitions: nuclear-LG, chiral & deconfinement.
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The linear sigma model

The LSM: Basics

The linear sigma model (LSM) Lagrangian for 2 quark flavours:

LLSM = q [i∂µγ
µ − g(σ + iγ5~τ · ~π)] q +

1
2
[
(∂µ~π)2 + (∂µσ)2]− U(σ, ~π)

(27)

U(σ, ~π) = USCSB + UECSB .
USCSB = λ2

4

(
σ2 + ~π2 + v2

)2 .
UECSB = −fπm2

πσ .
fπ is the pion decay constant and λ is the coupling constant.
LLSM is invariant under SU(2)L × SU(2)R transf., if UECSB = 0.
v is the vacuum expectation value of the chiral field Φ(σ, ~π) = Tr[Σ],
Σ = σ + i~τ · ~π; hence the name linear sigma model.
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The linear sigma model

The LSM: Thermodynamic potential

Using eqn. (27), one can get:

Ω(T , µq) = −T lnZ

V
= U(σ, ~π) + Ωqq(T , µq) ,

Z = exp

(
−VU

T

)
detp

{
[pµγ

µ + µqγ
0 − g(σ + iγ5~τ · ~π)]/T

}
&

Ωqq = −12
∫

d3p

(2π)3

{
E + T ln

[
1 + e

(
µq−E

T

)]
+ T ln

[
1 + e

(
−µq−E

T

)]}
Here Z ≡ the partition function, V ≡ the volume of the system,
Ω & Ωqq ≡ the thermodynamic potential and the quark-antiquark
contribution, T ≡ temperature and µq = µB/3 ≡ the chemical potential.

All thermodynamic quantities, like ε, P & n can be obtained from Ω
=⇒ a parameter-dependent EOS: P ≡ P(n, ε) can be obtained.
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The linear sigma model

QCD: Basics VI:- Phase-transitions
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The linear sigma model

QCD: Basics V:- Order-parameters

An order-parameter is a measure of the degree of order across the
boundaries in a phase-transition system. It normally ranges between 0
in one phase and non-zero in the other. At the critical point, the
order-parameter susceptibility will usually diverge → it goes through a
continuous (for crossover) or a discontinuous (for first-order) jump in
the presence of a phase-transition.
From a theoretical perspective, order-parameters arise from symmetry
breaking. When this happens, one needs to introduce one, or more,
extra variables to describe the state of the system.
Examples:

σ (the chiral-condensate) is the order-parameter for the chiral
phase-transition. It goes from a finite value to 0 during a chiral
phase-transition. In the chirally-asymmetric phase, it is non-zero.
But, in the chirally-symmetric phase, it is 0.
Φ (the Polyakov loop) goes from 0 to 1 in the presence of a
deconfinement transition. In the confined phase, the Polyakov
loop is 0 and in the deconfined (quark) phase, it is 1.
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The linear sigma model

The LSM: Phase diagram

Extending LSM to flavour-SU(3) only changes the position of the critical
end-point, not the nature of the first-order transition.
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The linear sigma model

The LSM: Drawbacks

There is no confinement-deconfinement mechanism. Therefore, the
nucleons appear as bound states of three quarks.
These bound-states need solving in a mean-field approximation, which
breaks both the rotational- and the isospin-invariance of the theory and
requires some projections onto physical states at the end.
Apart from chiral symmetry, the model has not been connected directly
to QCD.
The model does not always give the correct phenomenology, e.g., the
value of the isoscalar pion-nucleon scattering-length is too large.
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The Nambu–Jona-Lasinio model

The NJL model: Basics

In the simplest version of the Nambu–Jona-Lasinio (NJL) model, with
only scalar and pseudo-scalar 4-fermion interaction terms:

LNJL = q (i∂µγµ −m0) q +
G

2
[
(qq)2 + (qiγ5~τq)2] (28)

mq = m0 − G 〈qq〉 .
LNJL is invariant under SU(2)L × SU(2)R transf., if m0 = 0.
The coupling constant G has the dimension (energy)−2, which makes
the theory non-renormalisable and necessitates a 3-momentum cut-off
to regularise divergent integrals.
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The Nambu–Jona-Lasinio model

The NJL model: Thermodynamic potential

Using eqn. (28), one can get:

Z = exp

(
−VG 〈qq〉2

2T

)
detp

{
[pµγ

µ + µqγ
0 −mq]/T

}
and

Ω =
mq −m0

2G

− 12
∫

d3p

(2π)3

{
E + T ln

[
1 + e

(
µq−E

T

)]
+ T ln

[
1 + e

(
−µq−E

T

)]}
All thermodynamic quantities, like ε, P & n can be obtained from Ω
=⇒ a parameter-dependent EOS: P ≡ P(n, ε) can be obtained.
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The Nambu–Jona-Lasinio model

The NJL model: Phase diagram

TCEP (= 50 MeV) is lower than that obtained from LSM. The dashed
line denotes a crossover transition.
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The Nambu–Jona-Lasinio model

The NJL model: Afterword

Advantage:
NJL is a pre-QCD model for nucleons =⇒ LNJL is constructed
in a way that the symmetries of QCD are part and parcel of it.

Disadvantages:
There is no confinement-deconfinement mechanism.
Quark interactions are point-like in character =⇒ the theory is
not renormalisable and requires a regularisation scheme.
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The Polyakov–Nambu–Jona-Lasinio model

The PNJL model: Basics

The LS and NJL models have quark d.o.f., but no deconfinement
technique. Introducing the Polyakov loop as an approximate
order-parameter for deconfinement, the NJL Lagrangian with a
Polyakov-loop potential can be written as:

LPNJL = q (i∂µγµ −m0) q +
G

2
[
(qq)2 + (qiγ5~τq)2]− U(Φ,Φ∗,T )

(29)

Φ = 1
3 Tr[exp (iφ/T )] is the 3-colour-averaged, traced Polyakov-loop.

A local, chirally-symmetric, scalar–pseudo-scalar, four-point interaction
of the quark fields is introduced with an effective coupling strength G .
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The Polyakov–Nambu–Jona-Lasinio model

The PNJL model: Thermodynamic potential

The thermodynamic potential for the model reads:

Ω = U(Φ,Φ∗,T ) + g(σ,G )− Ωq ,

with

Ωq = 4
∫

d3p

(2π)3×{
T ln

[
1 + 3Φe−(Ep−µ∗

q )/T + 3Φ∗e−2(Ep−µ∗
q )/T + e−3(Ep−µ∗

q )/T
]

+ T ln
[
1 + 3Φ∗e−(Ep+µ∗

q )/T + 3Φe−2(Ep+µ∗
q )/T + e−3(Ep+µ∗

q )/T
]

+ 3∆EpΘ(Λ2 − ~p2)
}

where Φ goes from 0 to 1, signalling the deconfinement of quarks.
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The Polyakov–Nambu–Jona-Lasinio model

The PNJL model: Phase diagram

TCEP (= 150 MeV) is higher than that obtained from NJL. The dashed
lines denote the chiral and deconfinement crossover transitions.
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Summary

HIC’s have both equilibrium and non-equilibrium stages of evolution.
For the particle-dominated, non-equilibrium evolution, a microscopic
transport approach is used to track the dynamics of the system.
The transport approach requires a full, or effective, solution to the
Boltzmann transport eqn., e.g., UrQMD.
UrQMD requires ‘hybridisation’ with hydro. to reproduce exp. results.
The dynamics of the equilibrium-evolution is governed by hadronic and
partonic field interactions, making hydrodynamics applicable.
The EOS required to complete the set of hydro. equations-of-motion is
provided by effective-field theories, which replicate the symmetries of
QCD with a constructed, approximate, effective Lagrangian.
Iterative changes to the effective models have provided insights into
phenomena like chiral symmetry restoration and deconfinement.
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Spontaneous symmetry breaking

SSB: Vacuum expectation value
Let us consider the Lagrangian:

L(φ) =
1
2

(∂µφ)2 − 1
2
m2φ2 . (30)

Remembering that:

L(φ) = T (φ)− V(φ) , (31)

we have:

V(φ) =
1
2
m2φ2 . (32)

Minimising V(φ) w.r.t. φ, the
minima, φ0, gives the vacuum
expectation value:

φ0 = v = 0 ; (33)
v ≡ VEV of φ .

φ

V(φ)

Thus, we get a(n) SH potential with
a single vacuum state.
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Spontaneous symmetry breaking

SSB: Degenerate vacuum states
Introducing the interaction-term
λ
4φ

4 & replacing m2 with −µ2:

L(φ) =
1
2

(∂µφ)2 +
1
2
µ2φ2 − λ

4
φ4 .

(34)
L is symmetric under the discrete
transformation φ→ −φ and:

V(φ) = −1
2
µ2φ2 +

λ

4
φ4 (35)

has two minima:

φ0 = ±v = ± µ√
λ
. (36)

Thus, the potential has two,
equally-likely, degenerate,
symmetric vacuum states.

φ

V(φ)
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Spontaneous symmetry breaking

SSB: Discrete symmetry breaking

Supposing the system is near (say)
the +ve minima; we redefine φ as:

φ(x) = v + σ(x) ; (37)

to find that:

L(σ) =
1
2

(∂µσ)2 +
1
2
(
2m2)σ2+

m2

v
σ3 − λ

4
σ4 (38)

is asymmetric under σ → −σ and:

V(σ) = −1
2
(
2m2)σ2−m2

v
σ3 +

λ

4
σ4

(39)
gives us two, spontaneously
symmetry-broken vacuum states.

φ

V(φ)



Introduction Transport model approach Effective model approach Summary Appendix

Spontaneous symmetry breaking

SSB: Continuous symmetry breaking

For a continuous transformation φi → R ijφi ; with N real, scalar fields,
φi (x); that leaves the classical, linear sigma model’s Lagrangian:

L(φi ) =
1
2
(
∂µφ

i
)2

+
1
2
µ2 (φi)2 − λ

4
(
φi
)4

(40)

unchanged (i.e. L is symm. under an O(N) rot.), the potential:

V(φi ) = −1
2
µ2 (φi)2 +

λ

4
(
φi
)4

(41)

is minimised for φi0 = v = µ√
λ
; where v gives the length of the vector φi0,

while its direction is arbitrary. Choosing coordinates such that φi0 points
in the N th direction, φi0 = (0, 0, ..., 0, v), the shifted-fields,
φi (x) =

[
πk(x), v + σ(x)

]
; with k = 1, ...,N − 1; describe L as:

L =
1
2
(
∂µπ

k
)2

+
1
2

(∂µσ)2 − 1
2
(
2µ2)σ2 −

√
λµσ3

−
√
λµ
(
πk
)2
σ − λ

4
σ4 − λ

2
(
πk
)2
σ2 − λ

4
(
πk
)4

. (42)
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Spontaneous symmetry breaking

SSB: Goldstone’s theorem

The massive σ-field & the
N − 1, massless π-fields
spontaneously break the
original O(N) symmetry.
The remaining O(N − 1)
sub-group rotates the π’s
amongst themselves.
For N = 2, V(φi ) becomes
the sombrero-potential.
Oscillations of φi along
the potential’s trough
correspond to the π-fields.
Oscillations in the radial
direction correspond to the
σ-field of mass

√
2µ.

Goldstone’s theorem: The spontaneous breaking of a continuous,
global symmetry implies the existence of massless & spinless bosons.


	Introduction
	Transport model approach
	Kinetic theory
	Relativistic transport
	The ultra-relativistic quantum molecular dynamics model
	Open questions in HIC evolution

	Effective model approach
	QCD
	The linear sigma model
	The Nambu–Jona-Lasinio model
	The Polyakov–Nambu–Jona-Lasinio model

	Summary
	Appendix
	Spontaneous symmetry breaking


	0.Plus: 
	0.Reset: 
	0.Minus: 
	0.EndRight: 
	0.StepRight: 
	0.PlayPauseRight: 
	0.PlayRight: 
	0.PauseRight: 
	0.PlayPauseLeft: 
	0.PlayLeft: 
	0.PauseLeft: 
	0.StepLeft: 
	0.EndLeft: 
	anm0: 
	0.85: 
	0.84: 
	0.83: 
	0.82: 
	0.81: 
	0.80: 
	0.79: 
	0.78: 
	0.77: 
	0.76: 
	0.75: 
	0.74: 
	0.73: 
	0.72: 
	0.71: 
	0.70: 
	0.69: 
	0.68: 
	0.67: 
	0.66: 
	0.65: 
	0.64: 
	0.63: 
	0.62: 
	0.61: 
	0.60: 
	0.59: 
	0.58: 
	0.57: 
	0.56: 
	0.55: 
	0.54: 
	0.53: 
	0.52: 
	0.51: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


