A study of hot and dense strongly interacting systems with the quark-hadron chiral parity-doublet model

> Ayon Mukherjee Doctoral Disputation

Goethe Universität Frankfurt Institut für Theoretische Physik Frankfurt Institute for Advanced Studies HIC for FAIR

June 14, 2019

The Basics

Interaction	Theory	Mediator	Rel. Strength	Range (m)
Strong	QCD	Gluons	10 ³⁸	10^{-15}
Electromag.	QED	Photons	10 ³⁶	∞
Weak	E-W Theory	W & Z	10 ²⁵	10 ⁻⁸
Gravity	GR	Gravitons(?)	1	∞

Strong Interaction

- Early universe, neutron stars and heavy-ion collisions (HIC's), all have strong interactions as the dominant force
- HIC's used to recreate the state of matter after big bang and probe the nature of strong interactions
- Quantum Chromodynamics (QCD) details the rules of strong interaction

The Background

HIC & QCD

• Conjectured phases of an HIC

Courtesy: Chun Shen, The Ohio State University

• Analytic insolvability of QCD: the diverging coupling constant

The Background (contd.)

LQCD, PQCD & effective models

• Reason behind the use of LQCD, PQCD & effective model approaches

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} \sum_{\alpha} F^{\alpha}_{\mu\nu} F^{\mu\nu\alpha} + i \sum_{q} \overline{\psi}^{i}_{q} \gamma^{\mu} (D_{\mu})_{ij} \psi^{j}_{q} - \sum_{q} m_{q} \overline{\psi}^{i}_{q} \psi_{iq}$$

- Effective coupling strength: $\alpha_s \sim 1/\left[\ln\left(Q^2/\Lambda^2\right)\right]$
- Chiral Symmetry: A system which is symmetric in such a way that the system and its mirror-image are super-imposable
- For a non-zero value of the chiral condensate (σ = (qq)) the chiral symmetry of L_{QCD} is spontaneously broken
- σ as the order-parameter for QCD phase transitions and the consequent divergence of higher-order fluctuation moments (χ 's) of observables coupled to σ

The Model

The Crux

$$\mathcal{L}_{\rm B} = \sum_{i} (\bar{B}_{\rm i} i \partial \!\!/ B_{\rm i}) + \sum_{i} (\bar{B}_{\rm i} m_{\rm i}^* B_{\rm i}) + \sum_{i} (\bar{B}_{\rm i} \gamma_{\mu} (g_{\omega \rm i} \omega^{\mu} + g_{\rho \rm i} \rho^{\mu} + g_{\phi \rm i} \phi^{\mu}) B_{\rm i})$$

where

$$m_{i\pm}^{*} = \sqrt{\left[(g_{\sigma i}^{(1)}\sigma + g_{\zeta i}^{(1)}\zeta)^{2} + (m_{0} + n_{s}m_{s})^{2}\right]} \pm g_{\sigma i}^{(2)}\sigma \pm g_{\zeta i}^{(2)}\zeta$$

The Model (contd.)

Quarks as degrees-of-freedom

Quarks become the dominant degrees-of-freedom post deconfinement transition from hadron gas Polyakov loop $\Phi = (1/3)$ Tr [exp($i \int d\tau A_4$)], which goes from 0 to 1 during

deconfinement, added as order parameter for deconfinement transition

$$\Omega_{\mathsf{q}} \text{ or } \overline{\mathsf{q}} = -T \sum_{\mathsf{i} \in Q} rac{\gamma_{\mathsf{i}}}{(2\pi)^3} \int d^3k \ln\left(1 + \Phi \exp rac{E_{\mathsf{i}}^* \pm \mu_{\mathsf{i}}}{T}
ight)$$

$$U = -\frac{1}{2}a(T)\Phi\Phi^* + b(T)\ln[1 - 6\Phi\Phi^* + 4(\Phi^3\Phi^{*3}) - 3(\Phi\Phi^*)^2]$$

with $a(T) = a_0 T^4 + a_1 T_0 T^3 + a_2 T_0^2 T^2$, $b(T) = b_3 T_0^3 T$ Excluded volumes introduced to remove hadrons following deconfinement

The Setup

PT lines, freeze-out curves & baryon-number susceptibilities

 \bullet PT lines defined as $(\partial\sigma/\partial\mu_{\rm B})_{\rm max}$, or as $(\partial\rho_{\rm B}/\partial\mu_{\rm B})_{\rm max}$

• Compressibility:
$$K(\rho) = 9\rho^2 \frac{\partial^2(E/A)}{\partial \rho^2}\Big|_{\rho=\rho_0}$$

• Cumulants or susceptibilities (χ_n^B) :

$$\frac{\chi_{n}^{B}}{T^{2}} = n! \ c_{n}^{B}(T) = \frac{\partial^{n}(P(T,\mu_{B})/T^{4})}{\partial(\mu_{B}/T)^{n}}$$

• Freeze-out curve, from fit to experimental data, following the Braun-Munzinger prescription, where $\mu_B\sim 1/\sqrt{s_{NN}}$, with $\sqrt{s_{NN}}$ being the beam energy in GeV

The Outcomes I: Phase Diagrams

Source: AM, J. Steinheimer & S. Schramm [Phys. Rev. C 96 (2017)]

The Outcomes I: Beam-energy Scans Shape of you...

з

 $\begin{array}{c} \chi_{4B}^{A}/\chi_{2B}^{B} \text{ for } T_{\text{lim}} = 120 \text{ MeV} \\ \chi_{3}^{A}/\chi_{2}^{A} \text{ for } T_{\text{lim}} = 120 \text{ MeV} \end{array}$

The Application I: Neutron Stars The $Q\chi P$ EoS & the TOV equations

Complete Equation of State used in the Tolman-Oppenheimer-Volkoff (TOV) equations to generate mass-radius diagram for neutron stars

The Vindication

'Numbers' speak louder than words!

- Ground-state nuclear-matter compressibility (κ) = 267.12 MeV
- Saturation density (ρ_0) = 0.142 fm⁻³
- Binding energy (*E*/*A*), *a.k.a*: Energy density per baryon ($\varepsilon/\rho_{\rm B}$) = -16 MeV
- Symmetry energy: $S = \frac{1}{8} \left[\frac{d^2(\epsilon/\rho_{\rm B})}{d(I_3/B)^2} \right]_{\rho_{\rm B}=\rho_0} = 30.02 \text{ MeV}$
- Slope parameter: $L = 3\rho_0 \left[\frac{dS}{d\rho_{\rm B}}\right]_{\rho_{\rm B}=\rho_0} = 56.86$ MeV
- Maximum star mass: $M_{
 m max} = 1.98~M_{\odot}$
- Maximum star radius: $R_{
 m max} = 10.25$ km
- Canonical star mass: $M_{
 m c}=1.4~M_{\odot}$
- Canonical star radius: $R_{\rm c} = 11.10$ km

The Digression: Stranger Things

Non-zero net-strangeness chemical potential

- Local distributions of non-zero net-S could be formed as a result of system fluctuations
- Experimentally, from fitting observed particle ratios, $\mu_{\rm S}$ has been deduced to have a value of $\sim 25\%-30\%$ of $\mu_{\rm B}$

Source: AM, A. Bhattacharyya & S. Schramm (arXiv:1807.11319)

The Application II: Experimental Simulations

HADES

- The invariant mass spectrum of the di-electrons, obtained from the emissivity $\epsilon \equiv f(T, \rho_{\rm B}, M)$; is measured by the HADES experiment (GSI/SIS18) with beam-energy scans at 1.23 AGeV, using an Au+Au nuclear collision
- Using two different $Q\chi P$ equations of state as inputs

two hydrodynamic simulations are run

• The resulting temperatures, pressures, energy densities, baryon densities and quark fractions are observed

The Outcomes II: Average Baryon Density

The Outcomes II: Average Quark Fraction

The Summary

Conclusions

- Considerable influence of LG transition on cumulant values
- ullet Reasonable similarity to Lattice QCD predictions at $\mu_{\rm B}=0$
- Phenomenologically acceptable values for nuclear-matter compressibility, saturation density and energy density per baryon, despite inclusion of excluded-volume corrections which stiffen the EoS
- Successful application of the $Q\chi P$ -generated Equation of State to neutron stars and nuclear matter, as evidenced by the extracted symmetry energy and slope parameter values
- Generation of observationally vindicated values for maximum mass, canonical mass and canonical radius in neutron star family
- Modification of the QCD phase boundary, from a first-order to a smooth crossover, as a result of a non-zero $\mu_{\rm S}$
- \bullet Acceptable results for hydrodynamic simulations of HIC's, with the Q χP Equations of State

The Outlook

Coming soon... in journals near you

- Comparisons with HADES data: hydrodynamic simulations, focused on di-electron yield and particle-number fluctuations
- Extension of the $Q\chi P$ to finite nuclei
- Effects of isospin-symmetry breaking on the model, and in turn on HIC's
- $\bullet\,$ Magnetic field effects on the QCD phase diagram and fluctuations, using the ${\rm Q}\chi{\rm P}$
- Better agreement between $Q\chi P$ and LQCD calculations
- Tidal deformation calculations for NS's, with the Q χ P EoS
- Further exploration of the properties of ground-state nuclear-matter inside neutron stars, for different charge fractions

Thank you for your attention!

The Backup

অন্তরে অতৃপ্তি রবে সাঙ্গ করি' মনে হবে শেষ হয়ে হইল না শেষ।

The Backup: Experiments (Gen.)

The Backup: FAIR (Gen.)

Ayon Mukherjee Doctoral Disputation (A study of hot and dense strongly interac

June 14, 2019 21 / 34

The Backup: TOV, $L_{Q\chi P}$, Taub & Hydro (Gen.)

$$\frac{dP}{dr} = -\frac{M\rho}{r^2} \left(1 + \frac{P}{\varepsilon}\right) \left(1 + \frac{4\pi r^3 P}{M}\right) \left(1 - \frac{2M}{r}\right)^{-1}$$

$$L = L_{\rm kinetic} + L_{
m interaction} + L_{
m meson}$$

$$(\rho_0 \cdot X_0)^2 - (\rho \cdot X)^2 - (P_0 - P)(X_0 + X) = 0$$

$$D\varepsilon + (\varepsilon + P)\theta_{\mu}u^{\mu} = 0 ,$$

$$(\varepsilon + P)Du^{\alpha} + c_{s}^{2}\theta^{\alpha}\varepsilon = 0 ,$$

$$Dn + n\partial_{\mu}u^{\mu} = 0 .$$

The Backup: Taub Adiabat Calculations (NS)

Source: M. Hanauske, AM, H. Stöcker et al J. Phys. Conf. Ser. 878 (2017); J. Steinheimer, AM, H. Stöcker et al Springer Proc. Phys. 208 (2018)

June 14, 2019 23 / 34

The Backup: Binding energy (NS)

The Backup: Compactness (NS)

The Backup: Pressure (Mod.)

 $P = -\Omega = (T \ln \mathcal{Z})/V$

The Backup: Quark fraction (Mod.)

The Backup: Critical End-point (Str.)

The Backup: Phase-space (GSI)

Ayon Mukherjee Doctoral Disputation (A study of hot and dense strongly interac

June 14, 2019 29 / 34

The Backup: Interaction Measure (Mod.)

Lattice data comparison

- The model parameters are constrained by actual observables at large ρ_B & low T, not by lattice results at $\mu_B = 0$
- Interaction measure, $I = (\varepsilon 3P)/T^4$, used as means of comparison

Ayon Mukherjee Doctoral Disputation (A study of hot and dense strongly interac

June 14, 2019 31 / 34

The Backup: Average Temperature (GSI)

The Backup: Relative Abundance (NS)

Ayon Mukherjee Doctoral Disputation (A study of hot and dense strongly interac June 14, 2019 33 / 34

The Backup: Non-zero μ_S Chiral PT (Str.)

