Mu	lti-particle BE-HBT correlations	TENSIS DE ROLL
IS 2021	in a Hubble-expanding random field	FOR ALVANDO
ne VI th International Conference on the NITIAL STAGES OF HIGH-ENERGY NUCLEAR OLLISIONS	Ayon Mukherjee with M. Csanád, A. Jakovac, S. Lokos & S. K. Tripathy Eötvös Loránd University, Budapest, Hungary	
ntroduction	Basics I: Core-Halo model	
	• Probes for space-time geometry of emitter • Phase-space density of emitter: $S(x,p) = S_{core}(x,p) + S_{halo}(x,p)$ • "core" \rightarrow primordial hadrons & "halo" \rightarrow hadrons from decays • Two-particle correlation fn., with $q = p_1 - p_2$: $C_2(q,K) = 1 + \frac{ \tilde{S}(q,K) ^2}{ \tilde{S}(0,K) ^2} \approx 1 + \lambda_2 \frac{ \tilde{S}_{core}(q,K) ^2}{ \tilde{S}_{core}(0,K) ^2}$ • Two-particle correlation strength: $\lambda_2 = C_2(0) - 1 = f_c^2 = \left(\frac{N_{core}}{N_{core} + N_{halo}}\right)^2$	

- Quantum-statistical BE-HBT correlations as the main source of momentum correlation for identical bosons (with symmetric pair WF's) in HIC's
- A toy model simulation, to quantify the effects of an expanding cloud of charged gas on the 2- and 3-particle correlation-functions of correlated pions, is presented

• Three-particle correlation strength: $\lambda_3 = C_3(0) - 1$

• $\lambda_2 \& \lambda_3 \to \text{probes for partial coherence}$

Basics II: Particles' paths and background

- Particles' paths modified by surrounding charges \rightarrow phase shift
- Bose-Einstein correlations contain symmetrised wave functions
- Path of pair: closed loop \rightarrow Aharonov-Bohm effect with random field
- Background is the internal field \rightarrow causes the phase-shift

Set-up I: Illustration

- Illustration of 2-particle correlation measurement set-up
- a and b as sources, A and B as detectors
- R and d as distance between the sources and detectors, respectively
- k as the phase difference and L as the path length

Set-up II: Correlation functions

- CF's modified by randomly picked up phases
- 2-particles, pure core, w/o random phase:

$$C_{AB} = \frac{\langle |\Psi(r_A, r_B)|^2 \rangle}{\langle |\Phi(r_A)|^2 \rangle \langle |\Phi(r_B)|^2 \rangle} = 1 + \cos(qR)$$

$$\implies C_{AB}\big|_{q=0} - 1 = 1$$

Summary

- 2- & 3-particle correlations may reveal coherence
- The charge-cloud around a given pair \rightarrow a random background around correlated particles

Set-up III: Random-phase effects

• With random phase:

 $\langle |\Psi(r_A, r_B)|^2 \rangle \sim 1 + \cos\left(qR + \phi\right)$ $\implies C_{AB} - 1 = \cos(\phi)$

- $C_2(q) = 1 + \cos(qR) \rightarrow C_2(q) = 1 + \cos(qR + \phi)$
- Phase distribution is Gaussian $e^{-\phi^2/(2\sigma_{\phi}^2)}$
- Averaging over ϕ values: $C_2(q) 1 = \cos(qR)e^{-2\sigma_{\phi}^2}$
- 2- and 3-particle correlation strengths reduced: $\lambda_2 = C_2(0) - 1 = e^{-2\sigma_{\phi}^2} \& \lambda_3 = C_3(0) - 1 =$ $3e^{-2\sigma_{\phi}^{2}} + 2e^{3\sigma_{\phi}^{2}}$

Model

- ϕ results in a change in the "time-of-flight" Δt
- Charge cloud has N_{charges} in a 3-D Hubble flow

- $\sigma_t = \sigma_t(p)$ close to power-law
- Phase shift: direct dependence on N_{charges} and inverse dependence on fireball-radius observed

- Interpreted as an Aharonov-Bohm-like effect
- The $\lambda_2(m_t)$ & $\lambda_3(m_t)$ are modified at lower m_t
- There may be cases where this effect has to be taken into account, esp. at low pair transverse masses

References

• M. Csanád, A. Jakovac, S. Lokos, A. Mukherjee and S. K. Tripathy.

Multi-particle quantum-statistical correlation functions in a Hubble-expanding hadron gas. 7 (2020).

• T. Csörgő, B. Lörstadand and J. Zimányi. Z.Phys.C 71, 491 (1996)

• Test particle with initial p_{in} in random direction

• Measuring $t_{\text{ToF}}(d)$, calculate $\Delta t = t_{\text{ToF}}(d) - t_{\text{ToF}}(d)$ $t_{\rm ToF}^{(N_c=0)}(d)$

• Δt distribution is Gaussian, with width σ_t

• Δt related to phase-shift: $\phi = k\Delta x = \Delta t \cdot v \frac{p}{\hbar} =$ $\Delta t \frac{p^2}{\hbar \sqrt{m^2 + p^2}} \implies \sigma_{\phi} = \frac{\sigma_t p^2}{\hbar \sqrt{m^2 + p^2}}$